
Package: pcds (via r-universe)
October 16, 2024

Type Package

Title Proximity Catch Digraphs and Their Applications

Version 0.1.7

Author Elvan Ceyhan

Maintainer Elvan Ceyhan <elvanceyhan@gmail.com>

Description Contains the functions for construction and visualization
of various families of the proximity catch digraphs (PCDs) (see
(Ceyhan (2005) ISBN:978-3-639-19063-2), for computing the graph
invariants for testing the patterns of segregation and
association against complete spatial randomness (CSR) or
uniformity in one, two and three dimensional cases. The package
also has tools for generating points from these spatial
patterns. The graph invariants used in testing spatial point
data are the domination number (Ceyhan (2011)
<doi:10.1080/03610921003597211>) and arc density (Ceyhan et al.
(2006) <doi:10.1016/j.csda.2005.03.002>; Ceyhan et al. (2007)
<doi:10.1002/cjs.5550350106>). The PCD families considered are
Arc-Slice PCDs, Proportional-Edge PCDs, and Central Similarity
PCDs.

License GPL-2

Encoding UTF-8

LazyData TRUE

Imports combinat, interp, gMOIP, plot3D, plotrix, Rdpack (>= 0.7)

Depends R (>= 3.5.0)

RdMacros Rdpack

Suggests knitr, scatterplot3d, spatstat.random, rmarkdown, bookdown,
spelling

RoxygenNote 7.2.3

VignetteBuilder knitr

Language en-US

Repository https://elvanceyhan.r-universe.dev

1

https://doi.org/10.1080/03610921003597211
https://doi.org/10.1016/j.csda.2005.03.002
https://doi.org/10.1002/cjs.5550350106

2 Contents

RemoteUrl https://github.com/elvanceyhan/pcds

RemoteRef HEAD

RemoteSha 00331843a0670e7cd9a62b7bca70df06d4629212

Contents
.onAttach . 8
.onLoad . 9
angle.str2end . 9
angle3pnts . 11
arcsAS . 13
arcsAStri . 15
arcsCS . 17
arcsCS1D . 20
arcsCSend.int . 22
arcsCSint . 24
arcsCSmid.int . 26
arcsCStri . 28
arcsPE . 30
arcsPE1D . 32
arcsPEend.int . 34
arcsPEint . 36
arcsPEmid.int . 38
arcsPEtri . 40
area.polygon . 43
as.basic.tri . 44
ASarc.dens.tri . 45
center.nondegPE . 47
centerMc . 49
centersMc . 50
circumcenter.basic.tri . 51
circumcenter.tetra . 53
circumcenter.tri . 55
cl2CCvert.reg . 56
cl2CCvert.reg.basic.tri . 59
cl2edges.std.tri . 61
cl2edges.vert.reg.basic.tri . 64
cl2edgesCCvert.reg . 66
cl2edgesCMvert.reg . 68
cl2edgesMvert.reg . 71
cl2faces.vert.reg.tetra . 74
cl2Mc.int . 76
CSarc.dens.test . 78
CSarc.dens.test.int . 81
CSarc.dens.test1D . 83
CSarc.dens.tri . 85
dimension . 87

Contents 3

Dist . 88
dist.point2line . 90
dist.point2plane . 91
dist.point2set . 93
dom.num.exact . 94
dom.num.greedy . 95
edge.reg.triCM . 96
fr2edgesCMedge.reg.std.tri . 98
fr2vertsCCvert.reg . 100
fr2vertsCCvert.reg.basic.tri . 102
funsAB2CMTe . 107
funsAB2MTe . 109
funsCartBary . 111
funsCSEdgeRegs . 113
funsCSGamTe . 115
funsCSt1EdgeRegs . 119
funsIndDelTri . 120
funsMuVarCS1D . 123
funsMuVarCS2D . 125
funsMuVarCSend.int . 127
funsMuVarPE1D . 128
funsMuVarPE2D . 130
funsMuVarPEend.int . 132
funsPDomNum2PE1D . 134
funsRankOrderTe . 137
funsTbMid2CC . 139
IarcASbasic.tri . 142
IarcASset2pnt.tri . 145
IarcAStri . 147
IarcCS.Te.onesixth . 149
IarcCSbasic.tri . 150
IarcCSedge.reg.std.tri . 152
IarcCSend.int . 153
IarcCSint . 155
IarcCSmid.int . 156
IarcCSset2pnt.std.tri . 158
IarcCSset2pnt.tri . 160
IarcCSstd.tri . 161
IarcCSt1.std.tri . 163
IarcCStri . 164
IarcCStri.alt . 166
IarcPEbasic.tri . 168
IarcPEend.int . 170
IarcPEint . 171
IarcPEmid.int . 172
IarcPEset2pnt.std.tri . 174
IarcPEset2pnt.tri . 175
IarcPEstd.tetra . 177

4 Contents

IarcPEstd.tri . 179
IarcPEtetra . 180
IarcPEtri . 182
Idom.num.up.bnd . 184
Idom.num1ASbasic.tri . 186
Idom.num1AStri . 189
Idom.num1CS.Te.onesixth . 191
Idom.num1CSint . 193
Idom.num1CSstd.tri . 195
Idom.num1CSt1std.tri . 197
Idom.num1PEbasic.tri . 199
Idom.num1PEint . 202
Idom.num1PEstd.tetra . 204
Idom.num1PEtetra . 206
Idom.num1PEtri . 209
Idom.num2ASbasic.tri . 212
Idom.num2AStri . 214
Idom.num2CS.Te.onesixth . 217
Idom.num2PEbasic.tri . 218
Idom.num2PEstd.tetra . 220
Idom.num2PEtetra . 223
Idom.num2PEtri . 225
Idom.num3PEstd.tetra . 228
Idom.num3PEtetra . 230
Idom.numASup.bnd.tri . 232
Idom.numCSup.bnd.std.tri . 234
Idom.numCSup.bnd.tri . 236
Idom.setAStri . 238
Idom.setCSstd.tri . 240
Idom.setCStri . 241
Idom.setPEstd.tri . 243
Idom.setPEtri . 244
in.circle . 246
in.tetrahedron . 247
in.tri.all . 249
in.triangle . 251
inci.matAS . 252
inci.matAStri . 254
inci.matCS . 256
inci.matCS1D . 258
inci.matCSint . 259
inci.matCSstd.tri . 261
inci.matCStri . 262
inci.matPE . 264
inci.matPE1D . 266
inci.matPEint . 267
inci.matPEstd.tri . 269
inci.matPEtetra . 270

Contents 5

inci.matPEtri . 272
index.six.Te . 273
intersect.line.circle . 275
intersect.line.plane . 277
intersect2lines . 279
interval.indices.set . 280
is.in.data . 281
is.point . 283
is.std.eq.tri . 284
kfr2vertsCCvert.reg . 285
Line . 287
Line3D . 289
NASbasic.tri . 292
NAStri . 295
NCSint . 298
NCStri . 300
NPEbasic.tri . 301
NPEint . 303
NPEstd.tetra . 304
NPEtetra . 306
NPEtri . 308
num.arcsAS . 310
num.arcsAStri . 312
num.arcsCS . 313
num.arcsCS1D . 316
num.arcsCSend.int . 318
num.arcsCSint . 319
num.arcsCSmid.int . 321
num.arcsCSstd.tri . 323
num.arcsCStri . 324
num.arcsPE . 326
num.arcsPE1D . 328
num.arcsPEend.int . 331
num.arcsPEint . 332
num.arcsPEmid.int . 334
num.arcsPEstd.tri . 335
num.arcsPEtetra . 337
num.arcsPEtri . 338
num.delaunay.tri . 340
paraline . 341
paraline3D . 343
paraplane . 345
pcds . 347
Pdom.num2PE1Dasy . 349
Pdom.num2PEtri . 350
PEarc.dens.test . 351
PEarc.dens.test.int . 354
PEarc.dens.test1D . 356

6 Contents

PEarc.dens.tetra . 359
PEarc.dens.tri . 360
PEdom.num . 362
PEdom.num.binom.test . 364
PEdom.num.binom.test1D . 367
PEdom.num.binom.test1Dint . 370
PEdom.num.nondeg . 372
PEdom.num.norm.test . 374
PEdom.num.tetra . 377
PEdom.num.tri . 378
PEdom.num1D . 380
PEdom.num1Dnondeg . 382
perpline . 383
perpline2plane . 385
Plane . 388
plot.Extrema . 389
plot.Lines . 390
plot.Lines3D . 391
plot.NumArcs . 392
plot.Patterns . 393
plot.PCDs . 394
plot.Planes . 395
plot.TriLines . 397
plot.Uniform . 398
plotASarcs . 399
plotASarcs.tri . 401
plotASregs . 403
plotASregs.tri . 405
plotCSarcs . 408
plotCSarcs.int . 410
plotCSarcs.tri . 412
plotCSarcs1D . 415
plotCSregs . 417
plotCSregs.int . 419
plotCSregs.tri . 421
plotCSregs1D . 423
plotDelaunay.tri . 425
plotIntervals . 427
plotPEarcs . 428
plotPEarcs.int . 430
plotPEarcs.tri . 432
plotPEarcs1D . 435
plotPEregs . 437
plotPEregs.int . 439
plotPEregs.std.tetra . 441
plotPEregs.tetra . 443
plotPEregs.tri . 444
plotPEregs1D . 447

Contents 7

print.Extrema . 449
print.Lines . 450
print.Lines3D . 451
print.NumArcs . 452
print.Patterns . 453
print.PCDs . 454
print.Planes . 455
print.summary.Extrema . 456
print.summary.Lines . 456
print.summary.Lines3D . 457
print.summary.NumArcs . 457
print.summary.Patterns . 458
print.summary.PCDs . 458
print.summary.Planes . 459
print.summary.TriLines . 460
print.summary.Uniform . 460
print.TriLines . 461
print.Uniform . 462
prj.cent2edges . 463
prj.cent2edges.basic.tri . 464
prj.nondegPEcent2edges . 466
radii . 468
radius . 470
rassoc.circular . 472
rassoc.matern . 474
rassoc.multi.tri . 477
rassoc.std.tri . 479
rassoc.tri . 482
rassocII.std.tri . 484
rel.edge.basic.tri . 486
rel.edge.basic.triCM . 488
rel.edge.std.triCM . 490
rel.edge.tri . 492
rel.edge.triCM . 495
rel.edges.tri . 497
rel.edges.triCM . 499
rel.vert.basic.tri . 502
rel.vert.basic.triCC . 504
rel.vert.basic.triCM . 507
rel.vert.end.int . 509
rel.vert.mid.int . 511
rel.vert.std.tri . 513
rel.vert.std.triCM . 515
rel.vert.tetraCC . 517
rel.vert.tetraCM . 520
rel.vert.tri . 522
rel.vert.triCC . 524
rel.vert.triCM . 527

8 .onAttach

rel.verts.tri . 529
rel.verts.tri.nondegPE . 531
rel.verts.triCC . 533
rel.verts.triCM . 535
rel.verts.triM . 538
rseg.circular . 539
rseg.multi.tri . 542
rseg.std.tri . 544
rseg.tri . 547
rsegII.std.tri . 549
runif.basic.tri . 551
runif.multi.tri . 553
runif.std.tetra . 555
runif.std.tri . 557
runif.std.tri.onesixth . 558
runif.tetra . 560
runif.tri . 562
seg.tri.support . 563
six.extremaTe . 565
slope . 567
summary.Extrema . 568
summary.Lines . 569
summary.Lines3D . 570
summary.NumArcs . 571
summary.Patterns . 572
summary.PCDs . 573
summary.Planes . 574
summary.TriLines . 575
summary.Uniform . 576
swamptrees . 577
tri2std.basic.tri . 578
Xin.convex.hullY . 579

Index 581

.onAttach .onAttach start message

Description

.onAttach start message

Usage

.onAttach(libname, pkgname)

.onLoad 9

Arguments

libname defunct

pkgname defunct

Value

invisible()

.onLoad .onLoad getOption package settings

Description

.onLoad getOption package settings

Usage

.onLoad(libname, pkgname)

Arguments

libname defunct

pkgname defunct

Value

invisible()

Examples

getOption("pcds.name")

angle.str2end The angles to draw arcs between two line segments

Description

Gives the two pairs of angles in radians or degrees to draw arcs between two vectors or line segments
for the draw.arc function in the plotrix package. The angles are provided with respect to the x-
axis in the coordinate system. The line segments are [ba] and [bc] when the argument is given as
a,b,c in the function.

radian is a logical argument (default=TRUE) which yields the angle in radians if TRUE, and in
degrees if FALSE. The first pair of angles is for drawing arcs in the smaller angle between [ba] and
[bc] and the second pair of angles is for drawing arcs in the counter-clockwise order from [ba] to
[bc].

10 angle.str2end

Usage

angle.str2end(a, b, c, radian = TRUE)

Arguments

a, b, c Three 2D points which represent the intersecting line segments [ba] and [bc].

radian A logical argument (default=TRUE). If TRUE, the smaller angle or counter-clockwise
angle between the line segments [ba] and [bc] is provided in radians, else it is
provided in degrees.

Value

A list with two elements

small.arc.angles

Angles of [ba] and [bc] with the x-axis so that difference between them is the
smaller angle between [ba] and [bc]

ccw.arc.angles Angles of [ba] and [bc] with the x-axis so that difference between them is the
counter-clockwise angle between [ba] and [bc]

Author(s)

Elvan Ceyhan

See Also

angle3pnts

Examples

Not run:
A<-c(.3,.2); B<-c(.6,.3); C<-c(1,1)

pts<-rbind(A,B,C)

Xp<-c(B[1]+max(abs(C[1]-B[1]),abs(A[1]-B[1])),0)

angle.str2end(A,B,C)
angle.str2end(A,B,A)

angle.str2end(A,B,C,radian=FALSE)

#plot of the line segments
ang.rad<-angle.str2end(A,B,C,radian=TRUE); ang.rad
ang.deg<-angle.str2end(A,B,C,radian=FALSE); ang.deg
ang.deg1<-ang.deg$s; ang.deg1
ang.deg2<-ang.deg$c; ang.deg2

rad<-min(Dist(A,B),Dist(B,C))

Xlim<-range(pts[,1],Xp[1],B+Xp,B[1]+c(+rad,-rad))

angle3pnts 11

Ylim<-range(pts[,2],B[2]+c(+rad,-rad))
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

#plot for the smaller arc
plot(pts,pch=1,asp=1,xlab="x",ylab="y",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
L<-rbind(B,B,B); R<-rbind(A,C,B+Xp)
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
plotrix::draw.arc(B[1],B[2],radius=.3*rad,angle1=ang.rad$s[1],angle2=ang.rad$s[2])
plotrix::draw.arc(B[1],B[2],radius=.6*rad,angle1=0, angle2=ang.rad$s[1],lty=2,col=2)
plotrix::draw.arc(B[1],B[2],radius=.9*rad,angle1=0,angle2=ang.rad$s[2],col=3)
txt<-rbind(A,B,C)
text(txt+cbind(rep(xd*.02,nrow(txt)),rep(-xd*.02,nrow(txt))),c("A","B","C"))

text(rbind(B)+.5*rad*c(cos(mean(ang.rad$s)),sin(mean(ang.rad$s))),
paste(abs(round(ang.deg1[2]-ang.deg1[1],2))," degrees",sep=""))

text(rbind(B)+.6*rad*c(cos(ang.rad$s[1]/2),sin(ang.rad$s[1]/2)),paste(round(ang.deg1[1],2)),col=2)
text(rbind(B)+.9*rad*c(cos(ang.rad$s[2]/2),sin(ang.rad$s[2]/2)),paste(round(ang.deg1[2],2)),col=3)

#plot for the counter-clockwise arc
plot(pts,pch=1,asp=1,xlab="x",ylab="y",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
L<-rbind(B,B,B); R<-rbind(A,C,B+Xp)
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
plotrix::draw.arc(B[1],B[2],radius=.3*rad,angle1=ang.rad$c[1],angle2=ang.rad$c[2])
plotrix::draw.arc(B[1],B[2],radius=.6*rad,angle1=0, angle2=ang.rad$s[1],lty=2,col=2)
plotrix::draw.arc(B[1],B[2],radius=.9*rad,angle1=0,angle2=ang.rad$s[2],col=3)
txt<-pts
text(txt+cbind(rep(xd*.02,nrow(txt)),rep(-xd*.02,nrow(txt))),c("A","B","C"))

text(rbind(B)+.5*rad*c(cos(mean(ang.rad$c)),sin(mean(ang.rad$c))),
paste(abs(round(ang.deg2[2]-ang.deg2[1],2))," degrees",sep=""))

text(rbind(B)+.6*rad*c(cos(ang.rad$s[1]/2),sin(ang.rad$s[1]/2)),paste(round(ang.deg1[1],2)),col=2)
text(rbind(B)+.9*rad*c(cos(ang.rad$s[2]/2),sin(ang.rad$s[2]/2)),paste(round(ang.deg1[2],2)),col=3)

End(Not run)

angle3pnts The angle between two line segments

Description

Returns the angle in radians or degrees between two vectors or line segments at the point of in-
tersection. The line segments are [ba] and [bc] when the arguments of the function are given as
a,b,c. radian is a logical argument (default=TRUE) which yields the angle in radians if TRUE, and
in degrees if FALSE. The smaller of the angle between the line segments is provided by the function.

Usage

angle3pnts(a, b, c, radian = TRUE)

12 angle3pnts

Arguments

a, b, c Three 2D points which represent the intersecting line segments [ba] and [bc].
The smaller angle between these line segments is to be computed.

radian A logical argument (default=TRUE). If TRUE, the (smaller) angle between the line
segments [ba] and [bc] is provided in radians, else it is provided in degrees.

Value

angle in radians or degrees between the line segments [ba] and [bc]

Author(s)

Elvan Ceyhan

See Also

angle.str2end

Examples

Not run:
A<-c(.3,.2); B<-c(.6,.3); C<-c(1,1)
pts<-rbind(A,B,C)

angle3pnts(A,B,C)

angle3pnts(A,B,A)
round(angle3pnts(A,B,A),7)

angle3pnts(A,B,C,radian=FALSE)

#plot of the line segments
Xlim<-range(pts[,1])
Ylim<-range(pts[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

ang1<-angle3pnts(A,B,C,radian=FALSE)
ang2<-angle3pnts(B+c(1,0),B,C,radian=FALSE)

sa<-angle.str2end(A,B,C,radian=FALSE)$s #small arc angles
ang1<-sa[1]
ang2<-sa[2]

plot(pts,asp=1,pch=1,xlab="x",ylab="y",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
L<-rbind(B,B); R<-rbind(A,C)
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
plotrix::draw.arc(B[1],B[2],radius=xd*.1,deg1=ang1,deg2=ang2)
txt<-rbind(A,B,C)
text(txt+cbind(rep(xd*.05,nrow(txt)),rep(-xd*.02,nrow(txt))),c("A","B","C"))

arcsAS 13

text(rbind(B)+.15*xd*c(cos(pi*(ang2+ang1)/360),sin(pi*(ang2+ang1)/360)),
paste(round(abs(ang1-ang2),2)," degrees"))

End(Not run)

arcsAS The arcs of Arc Slice Proximity Catch Digraph (AS-PCD) for a 2D
data set - multiple triangle case

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) of AS-PCD
whose vertices are the data set Xp and related parameters and the quantities of the digraph.

AS proximity regions are defined with respect to the Delaunay triangles based on Yp points, i.e., AS
proximity regions are defined only for Xp points inside the convex hull of Yp points. That is, arcs
may exist for points only inside the convex hull of Yp points. It also provides various descriptions
and quantities about the arcs of the AS-PCD such as number of arcs, arc density, etc.

Vertex regions are based on the center M="CC" for circumcenter of each Delaunay triangle or M =
(α, β, γ) in barycentric coordinates in the interior of each Delaunay triangle; default is M="CC"
i.e., circumcenter of each triangle. M must be entered in barycentric coordinates unless it is the
circumcenter.

See (Ceyhan (2005, 2010)) for more on AS PCDs. Also see (Okabe et al. (2000); Ceyhan (2010);
Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

Usage

arcsAS(Xp, Yp, M = "CC")

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangulation.
The Delaunay triangles partition the convex hull of Yp points.

M The center of the triangle. "CC" represents the circumcenter of each Delaunay
triangle or 3D point in barycentric coordinates which serves as a center in the
interior of each Delaunay triangle; default is M="CC" i.e., the circumcenter of
each triangle. M must be entered in barycentric coordinates unless it is the cir-
cumcenter.

Value

A list with the elements

type A description of the type of the digraph

14 arcsAS

parameters Parameters of the digraph, here, it is the center used to construct the vertex
regions, default is circumcenter, denoted as "CC", otherwise given in barycentric
coordinates.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the Delaunay triangulation based on Yp points.

tess.name Name of data set used in tessellation, i.e., Yp

vertices Vertices of the digraph, Xp.

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of AS-PCD for 2D data set Xp in the multiple
triangle case as the vertices of the digraph

E Heads (or arrow ends) of the arcs of AS-PCD for 2D data set Xp in the multiple
triangle case as the vertices of the digraph

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

arcsAStri, arcsPEtri, arcsCStri, arcsPE, and arcsCS

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; #try also nx=20; nx<-40; ny<-10 or nx<-1000; ny<-10;

arcsAStri 15

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)

Arcs<-arcsAS(Xp,Yp,M) #try also the default M with Arcs<-arcsAS(Xp,Yp)
Arcs
summary(Arcs)
plot(Arcs)

arcsAS(Xp,Yp[1:3,],M)

End(Not run)

arcsAStri The arcs of Arc Slice Proximity Catch Digraph (AS-PCD) for 2D data
- one triangle case

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) for data set
Xp as the vertices of AS-PCD and related parameters and the quantities of the digraph.

AS proximity regions are constructed with respect to the triangle tri, i.e., arcs may exist for points
only inside tri. It also provides various descriptions and quantities about the arcs of the AS-PCD
such as number of arcs, arc density, etc.

Vertex regions are based on the center M="CC" for circumcenter of tri; or M = (m1,m2) in
Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of the triangle
tri; default is M="CC" the circumcenter of tri. The different consideration of circumcenter vs any
other interior center of the triangle is because the projections from circumcenter are orthogonal to
the edges, while projections of M on the edges are on the extensions of the lines connecting M and
the vertices.

See also (Ceyhan (2005, 2010)).

Usage

arcsAStri(Xp, tri, M = "CC")

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

16 arcsAStri

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle Tb; default is M="CC" i.e.,
the circumcenter of tri.

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, it is the center used to construct the vertex
regions.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the support triangle.

tess.name Name of data set used in tessellation (i.e., vertices of the triangle).

vertices Vertices of the digraph, Xp.

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of AS-PCD for 2D data set Xp as vertices of the
digraph

E Heads (or arrow ends) of the arcs of AS-PCD for 2D data set Xp as vertices of
the digraph

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

arcsAS, arcsPEtri, arcsCStri, arcsPE, and arcsCS

arcsCS 17

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);

Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2) or M<-circumcenter.tri(Tr)

Arcs<-arcsAStri(Xp,Tr,M) #try also Arcs<-arcsAStri(Xp,Tr)
#uses the default center, namely circumcenter for M
Arcs
summary(Arcs)
plot(Arcs) #use plot(Arcs,asp=1) if M=CC

#can add vertex regions
#but we first need to determine center is the circumcenter or not,
#see the description for more detail.
CC<-circumcenter.tri(Tr)
M = as.numeric(Arcs$parameters[[1]])
if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
}
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)

#now we add the vertex names and annotation
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]+c(-.02,.03,.02,.03,.04,-.03,-.01)
yc<-txt[,2]+c(.02,.02,.03,.06,.04,.05,-.07)
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

arcsCS The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for
2D data - multiple triangle case

18 arcsCS

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) of Cen-
tral Similarity Proximity Catch Digraph (CS-PCD) whose vertices are the data points in Xp in the
multiple triangle case and related parameters and the quantities of the digraph.

CS proximity regions are defined with respect to the Delaunay triangles based on Yp points with
expansion parameter t > 0 and edge regions in each triangle are based on the center M = (α, β, γ)
in barycentric coordinates in the interior of each Delaunay triangle (default for M = (1, 1, 1) which
is the center of mass of the triangle). Each Delaunay triangle is first converted to an (nonscaled)
basic triangle so that M will be the same type of center for each Delaunay triangle (this conversion
is not necessary when M is CM).

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For
the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull
of Yp points.

See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) for more on CS-PCDs. Also see (Ok-
abe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the
corresponding algorithm.

Usage

arcsCS(Xp, Yp, t, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of the CS-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 3D point in barycentric coordinates which serves as a center in the interior of
each Delaunay triangle, default for M = (1, 1, 1) which is the center of mass of
each triangle.

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, it is the center used to construct the edge re-
gions.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is Delaunay triangulation based on Yp points.

tess.name Name of data set used in tessellation, it is Yp for this function

vertices Vertices of the digraph, Xp points

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of CS-PCD for 2D data set Xp as vertices of the
digraph

arcsCS 19

E Heads (or arrow ends) of the arcs of CS-PCD for 2D data set Xp as vertices of
the digraph

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of triangles, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

arcsCStri, arcsAS and arcsPE

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)

tau<-1.5 #try also tau<-2

Arcs<-arcsCS(Xp,Yp,tau,M)

20 arcsCS1D

#or use the default center Arcs<-arcsCS(Xp,Yp,tau)
Arcs
summary(Arcs)
plot(Arcs)

End(Not run)

arcsCS1D The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for
1D data - multiple interval case

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) for 1D
data set Xp as the vertices of CS-PCD and related parameters and the quantities of the digraph. Yp
determines the end points of the intervals.

For this function, CS proximity regions are constructed data points inside or outside the intervals
based on Yp points with expansion parameter t > 0 and centrality parameter c ∈ (0, 1). That is,
for this function, arcs may exist for points in the middle or end intervals. It also provides various
descriptions and quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.

Equivalent to function arcsCS1D.

See also (Ceyhan (2016)).

Usage

arcsCS1D(Xp, Yp, t, c = 0.5)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the CS-PCD.

Yp A set or vector of 1D points which constitute the end points of the intervals.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, they are expansion and centrality parameters.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the intervalization of the real line based on Yp points.

arcsCS1D 21

tess.name Name of data set used in tessellation, it is Yp for this function

vertices Vertices of the digraph, Xp points

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of CS-PCD for 1D data

E Heads (or arrow ends) of the arcs of CS-PCD for 1D data

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

arcsCSend.int, arcsCSmid.int, arcsCS1D, and arcsPE1D

Examples

t<-2
c<-.4
a<-0; b<-10;

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xr<-range(a,b)
xf<-(xr[2]-xr[1])*.1

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

Arcs<-arcsCS1D(Xp,Yp,t,c)
Arcs
summary(Arcs)
plot(Arcs)

S<-Arcs$S
E<-Arcs$E

arcsCS1D(Xp,Yp,t,c)

arcsCS1D(Xp,Yp+10,t,c)

22 arcsCSend.int

jit<-.1
yjit<-runif(nx,-jit,jit)

Xlim<-range(a,b,Xp,Yp)
xd<-Xlim[2]-Xlim[1]

plot(cbind(a,0),
main="arcs of CS-PCD for points (jittered along y-axis)\n in middle intervals ",
xlab=" ", ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*c(-jit,jit),pch=".")
abline(h=0,lty=1)
points(Xp, yjit,pch=".",cex=3)
abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)

t<-2
c<-.4
a<-0; b<-10;
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)

arcsCS1D(Xp,Yp,t,c)

arcsCSend.int The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for
1D data - end interval case

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) for 1D
data set Xp as the vertices of CS-PCD and related parameters and the quantities of the digraph. Yp
determines the end points of the end intervals.

For this function, CS proximity regions are constructed data points outside the intervals based on
Yp points with expansion parameter t > 0. That is, for this function, arcs may exist for points
only inside end intervals. It also provides various descriptions and quantities about the arcs of the
CS-PCD such as number of arcs, arc density, etc.

See also (Ceyhan (2016)).

Usage

arcsCSend.int(Xp, Yp, t)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the CS-PCD.
Yp A set or vector of 1D points which constitute the end points of the intervals.
t A positive real number which serves as the expansion parameter in CS proximity

region.

arcsCSend.int 23

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, it is the expansion parameter.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the intervalization based on Yp.

tess.name Name of data set used in tessellation, it is Yp for this function

vertices Vertices of the digraph, Xp points

vert.name Name of the data set which constitutes the vertices of the digraph

S Tails (or sources) of the arcs of CS-PCD for 1D data in the end intervals

E Heads (or arrow ends) of the arcs of CS-PCD for 1D data in the end intervals

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of intervals (which is 2 for end intervals), number of arcs, and
arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

arcsCSmid.int, arcsCS1D , arcsPEmid.int, arcsPEend.int and arcsPE1D

Examples

t<-1.5
a<-0; b<-10; int<-c(a,b)

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xr<-range(a,b)
xf<-(xr[2]-xr[1])*.5

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

arcsCSend.int(Xp,Yp,t)

Arcs<-arcsCSend.int(Xp,Yp,t)

24 arcsCSint

Arcs
summary(Arcs)
plot(Arcs)

S<-Arcs$S
E<-Arcs$E

jit<-.1
yjit<-runif(nx,-jit,jit)

Xlim<-range(a,b,Xp,Yp)
xd<-Xlim[2]-Xlim[1]

plot(cbind(a,0),pch=".",
main="arcs of CS-PCD with vertices (jittered along y-axis)\n in end intervals ",

xlab=" ", ylab=" ",xlim=Xlim+xd*c(-.05,.05),ylim=3*c(-jit,jit))
abline(h=0,lty=1)
points(Xp, yjit,pch=".",cex=3)
abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)

arcsCSend.int(Xp,Yp,t)

arcsCSint The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for
1D data - one interval case

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) for 1D data
set Xp as the vertices of CS-PCD. int determines the end points of the interval.

For this function, CS proximity regions are constructed data points inside or outside the interval
based on int points with expansion parameter t > 0 and centrality parameter c ∈ (0, 1). That is,
for this function, arcs may exist for points in the middle or end intervals. It also provides various
descriptions and quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.

Usage

arcsCSint(Xp, int, t, c = 0.5)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the CS-PCD.
int A vector of two 1D points which constitutes the end points of the interval.
t A positive real number which serves as the expansion parameter in CS proximity

region.
c A positive real number in (0, 1) parameterizing the center inside middle intervals

with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

arcsCSint 25

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, they are expansion and centrality parameters.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the intervalization of the real line based on int points.

tess.name Name of data set used in tessellation, it is int for this function

vertices Vertices of the digraph, Xp points

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of CS-PCD for 1D data

E Heads (or arrow ends) of the arcs of CS-PCD for 1D data

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

arcsCS1D, arcsCSmid.int, arcsCSend.int, and arcsPE1D

Examples

tau<-2
c<-.4
a<-0; b<-10; int<-c(a,b);

#n is number of X points
n<-10; #try also n<-20

xf<-(int[2]-int[1])*.1

set.seed(1)
Xp<-runif(n,a-xf,b+xf)

Arcs<-arcsCSint(Xp,int,tau,c)
Arcs
summary(Arcs)
plot(Arcs)

Xp<-runif(n,a+10,b+10)

26 arcsCSmid.int

Arcs=arcsCSint(Xp,int,tau,c)
Arcs
summary(Arcs)
plot(Arcs)

arcsCSmid.int The arcs of Central Similarity Proximity Catch Digraph (CS-PCD) for
1D data - middle intervals case

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) for 1D data
set Xp as the vertices of CS-PCD and related parameters and the quantities of the digraph.

For this function, CS proximity regions are constructed with respect to the intervals based on Yp
points with expansion parameter t > 0 and centrality parameter c ∈ (0, 1). That is, for this func-
tion, arcs may exist for points only inside the intervals. It also provides various descriptions and
quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.

Vertex regions are based on center Mc of each middle interval.

See also (Ceyhan (2016)).

Usage

arcsCSmid.int(Xp, Yp, t, c = 0.5)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the CS-PCD.

Yp A set or vector of 1D points which constitute the end points of the intervals.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, they are expansion and centrality parameters.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the intervalization based on Yp points.

tess.name Name of data set used in tessellation, it is Yp for this function

vertices Vertices of the digraph, i.e., Xp points

arcsCSmid.int 27

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of CS-PCD for 1D data in the middle intervals

E Heads (or arrow ends) of the arcs of CS-PCD for 1D data in the middle intervals

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

arcsPEend.int, arcsPE1D, arcsCSmid.int, arcsCSend.int and arcsCS1D

Examples

t<-1.5
c<-.4
a<-0; b<-10

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)

arcsCSmid.int(Xp,Yp,t,c)
arcsCSmid.int(Xp,Yp+10,t,c)

Arcs<-arcsCSmid.int(Xp,Yp,t,c)
Arcs
summary(Arcs)
plot(Arcs)

S<-Arcs$S
E<-Arcs$E

jit<-.1
yjit<-runif(nx,-jit,jit)

Xlim<-range(Xp,Yp)
xd<-Xlim[2]-Xlim[1]

plot(cbind(a,0),

28 arcsCStri

main="arcs of CS-PCD whose vertices (jittered along y-axis)\n in middle intervals ",
xlab=" ", ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*c(-jit,jit),pch=".")
abline(h=0,lty=1)
points(Xp, yjit,pch=".",cex=3)
abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)

t<-.5
c<-.4
a<-0; b<-10;
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)

arcsCSmid.int(Xp,Yp,t,c)

arcsCStri The arcs of Central Similarity Proximity Catch Digraphs (CS-PCD)
for 2D data - one triangle case

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) for data set
Xp as the vertices of CS-PCD and related parameters and the quantities of the digraph.

CS proximity regions are constructed with respect to the triangle tri with expansion parameter
t > 0, i.e., arcs may exist for points only inside tri. It also provides various descriptions and
quantities about the arcs of the CS-PCD such as number of arcs, arc density, etc.

Edge regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in
barycentric coordinates in the interior of the triangle tri; default is M = (1, 1, 1) i.e., the center of
mass of tri.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

arcsCStri(Xp, tri, t, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of the CS-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter of
tri; default is M = (1, 1, 1) i.e., the center of mass of tri.

arcsCStri 29

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, the center M used to construct the edge regions and
the expansion parameter t.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the support triangle.

tess.name Name of data set used in tessellation (i.e., vertices of the triangle)

vertices Vertices of the digraph, Xp points

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of CS-PCD for 2D data set Xp as vertices of the
digraph

E Heads (or arrow ends) of the arcs of CS-PCD for 2D data set Xp as vertices of
the digraph

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of triangles, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

arcsCS, arcsAStri and arcsPEtri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)

30 arcsPE

Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

t<-1.5 #try also t<-2

Arcs<-arcsCStri(Xp,Tr,t,M)
#or try with the default center Arcs<-arcsCStri(Xp,Tr,t); M= (Arcs$param)$c
Arcs
summary(Arcs)
plot(Arcs)

#can add edge regions
L<-rbind(M,M,M); R<-Tr
segments(L[,1], L[,2], R[,1], R[,2], lty=2)

#now we can add the vertex names and annotation
txt<-rbind(Tr,M)
xc<-txt[,1]+c(-.02,.03,.02,.03)
yc<-txt[,2]+c(.02,.02,.03,.06)
txt.str<-c("A","B","C","M")
text(xc,yc,txt.str)

End(Not run)

arcsPE The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for 2D data - multiple triangle case

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) of Pro-
portional Edge Proximity Catch Digraph (PE-PCD) whose vertices are the data points in Xp in the
multiple triangle case and related parameters and the quantities of the digraph.

PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with ex-
pansion parameter r ≥ 1 and vertex regions in each triangle are based on the center M = (α, β, γ)
in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of
each Delaunay triangle (default for M = (1, 1, 1) which is the center of mass of the triangle). Each
Delaunay triangle is first converted to an (nonscaled) basic triangle so that M will be the same type
of center for each Delaunay triangle (this conversion is not necessary when M is CM).

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For
the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull
of Yp points.

See (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)) for more on the PE-PCDs. Also, see
(Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the
corresponding algorithm.

arcsPE 31

Usage

arcsPE(Xp, Yp, r, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 3D point in barycentric coordinates which serves as a center in the interior
of each Delaunay triangle or circumcenter of each Delaunay triangle (for this,
argument should be set as M="CC"), default for M = (1, 1, 1) which is the center
of mass of each triangle.

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, the center used to construct the vertex regions and
the expansion parameter.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is Delaunay triangulation based on Yp points.

tess.name Name of data set used in tessellation, it is Yp for this function

vertices Vertices of the digraph, Xp points

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of PE-PCD for 2D data set Xp as vertices of the
digraph

E Heads (or arrow ends) of the arcs of PE-PCD for 2D data set Xp as vertices of
the digraph

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of triangles, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”

32 arcsPE1D

Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

arcsPEtri, arcsAS, and arcsCS

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)

r<-1.5 #try also r<-2

Arcs<-arcsPE(Xp,Yp,r,M)
#or try with the default center Arcs<-arcsPE(Xp,Yp,r)
Arcs
summary(Arcs)
plot(Arcs)

End(Not run)

arcsPE1D The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for 1D data - multiple interval case

arcsPE1D 33

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) for 1D
data set Xp as the vertices of PE-PCD and related parameters and the quantities of the digraph. Yp
determines the end points of the intervals.

For this function, PE proximity regions are constructed data points inside or outside the intervals
based on Yp points with expansion parameter r ≥ 1 and centrality parameter c ∈ (0, 1). That is,
for this function, arcs may exist for points in the middle or end intervals. It also provides various
descriptions and quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.

See also (Ceyhan (2012)).

Usage

arcsPE1D(Xp, Yp, r, c = 0.5)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the PE-PCD.

Yp A set or vector of 1D points which constitute the end points of the intervals.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, (a, b), the parameterized center is Mc =
a+ c(b− a).

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, they are expansion and centrality parameters.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the intervalization of the real line based on Yp points.

tess.name Name of data set used in tessellation, it is Yp for this function

vertices Vertices of the digraph, Xp points

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of PE-PCD for 1D data

E Heads (or arrow ends) of the arcs of PE-PCD for 1D data

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

34 arcsPEend.int

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

arcsPEint, arcsPEmid.int, arcsPEend.int, and arcsCS1D

Examples

Not run:
r<-2
c<-.4
a<-0; b<-10; int<-c(a,b);

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xf<-(int[2]-int[1])*.1

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

Arcs<-arcsPE1D(Xp,Yp,r,c)
Arcs
summary(Arcs)
plot(Arcs)

End(Not run)

arcsPEend.int The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for 1D data - end interval case

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) for 1D
data set Xp as the vertices of PE-PCD and related parameters and the quantities of the digraph. Yp
determines the end points of the end intervals.

For this function, PE proximity regions are constructed data points outside the intervals based on
Yp points with expansion parameter r ≥ 1. That is, for this function, arcs may exist for points
only inside end intervals. It also provides various descriptions and quantities about the arcs of the
PE-PCD such as number of arcs, arc density, etc.

See also (Ceyhan (2012)).

arcsPEend.int 35

Usage

arcsPEend.int(Xp, Yp, r)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the PE-PCD.

Yp A set or vector of 1D points which constitute the end points of the intervals.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, it is the expansion parameter.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the intervalization based on Yp.

tess.name Name of data set used in tessellation, it is Yp for this function

vertices Vertices of the digraph, Xp points

vert.name Name of the data set which constitutes the vertices of the digraph

S Tails (or sources) of the arcs of PE-PCD for 1D data in the end intervals

E Heads (or arrow ends) of the arcs of PE-PCD for 1D data in the end intervals

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of intervals (which is 2 for end intervals), number of arcs, and
arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

arcsPEmid.int, arcsPE1D , arcsCSmid.int, arcsCSend.int and arcsCS1D

36 arcsPEint

Examples

Not run:
r<-2
a<-0; b<-10; int<-c(a,b);

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xf<-(int[2]-int[1])*.5

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b) #try also Yp<-runif(ny,a,b)+c(-10,10)

Arcs<-arcsPEend.int(Xp,Yp,r)
Arcs
summary(Arcs)
plot(Arcs)

S<-Arcs$S
E<-Arcs$E

jit<-.1
yjit<-runif(nx,-jit,jit)

Xlim<-range(a,b,Xp,Yp)
xd<-Xlim[2]-Xlim[1]

plot(cbind(a,0),pch=".",
main="arcs of PE-PCDs for points (jittered along y-axis)\n in end intervals ",
xlab=" ", ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*c(-jit,jit))
abline(h=0,lty=1)
points(Xp, yjit,pch=".",cex=3)
abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)

End(Not run)

arcsPEint The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for 1D data - one interval case

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) for 1D data
set Xp as the vertices of PE-PCD. int determines the end points of the interval.

For this function, PE proximity regions are constructed data points inside or outside the interval
based on int points with expansion parameter r ≥ 1 and centrality parameter c ∈ (0, 1). That is,

arcsPEint 37

for this function, arcs may exist for points in the middle or end intervals. It also provides various
descriptions and quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.

See also (Ceyhan (2012)).

Usage

arcsPEint(Xp, int, r, c = 0.5)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the PE-PCD.

int A vector of two 1D points which constitutes the end points of the interval.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, they are expansion and centrality parameters.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the intervalization of the real line based on int points.

tess.name Name of data set used in tessellation, it is int for this function

vertices Vertices of the digraph, Xp points

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of PE-PCD for 1D data

E Heads (or arrow ends) of the arcs of PE-PCD for 1D data

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

arcsPE1D, arcsPEmid.int, arcsPEend.int, and arcsCS1D

38 arcsPEmid.int

Examples

Not run:
r<-2
c<-.4
a<-0; b<-10; int<-c(a,b);

#n is number of X points
n<-10; #try also n<-20

xf<-(int[2]-int[1])*.1

set.seed(1)
Xp<-runif(n,a-xf,b+xf)

Arcs<-arcsPEint(Xp,int,r,c)
Arcs
summary(Arcs)
plot(Arcs)

End(Not run)

arcsPEmid.int The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for 1D data - middle intervals case

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) for 1D data
set Xp as the vertices of PE-PCD.

For this function, PE proximity regions are constructed with respect to the intervals based on Yp
points with expansion parameter r ≥ 1 and centrality parameter c ∈ (0, 1). That is, for this
function, arcs may exist for points only inside the intervals. It also provides various descriptions
and quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.

Vertex regions are based on center Mc of each middle interval.

See also (Ceyhan (2012)).

Usage

arcsPEmid.int(Xp, Yp, r, c = 0.5)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the PE-PCD.

Yp A set or vector of 1D points which constitute the end points of the intervals.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

arcsPEmid.int 39

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, (a, b), the parameterized center is Mc =
a+ c(b− a).

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, here, they are expansion and centrality parameters.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the intervalization based on Yp points.

tess.name Name of data set used in tessellation, it is Yp for this function

vertices Vertices of the digraph, i.e., Xp points

vert.name Name of the data set which constitute the vertices of the digraph

S Tails (or sources) of the arcs of PE-PCD for 1D data in the middle intervals

E Heads (or arrow ends) of the arcs of PE-PCD for 1D data in the middle intervals

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of intervals, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

arcsPEend.int, arcsPE1D, arcsCSmid.int, arcsCSend.int and arcsCS1D

Examples

Not run:
r<-2
c<-.4
a<-0; b<-10;

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)

40 arcsPEtri

Arcs<-arcsPEmid.int(Xp,Yp,r,c)
Arcs
summary(Arcs)
plot(Arcs)

S<-Arcs$S
E<-Arcs$E

arcsPEmid.int(Xp,Yp,r,c)
arcsPEmid.int(Xp,Yp+10,r,c)

jit<-.1
yjit<-runif(nx,-jit,jit)

Xlim<-range(Xp,Yp)
xd<-Xlim[2]-Xlim[1]

plot(cbind(a,0),
main="arcs of PE-PCD for points (jittered along y-axis)\n in middle intervals ",
xlab=" ", ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*c(-jit,jit),pch=".")
abline(h=0,lty=1)
points(Xp, yjit,pch=".",cex=3)
abline(v=Yp,lty=2)
arrows(S, yjit, E, yjit, length = .05, col= 4)

End(Not run)

arcsPEtri The arcs of Proportional Edge Proximity Catch Digraph (PE-PCD)
for 2D data - one triangle case

Description

An object of class "PCDs". Returns arcs as tails (or sources) and heads (or arrow ends) for data set
Xp as the vertices of PE-PCD and related parameters and the quantities of the digraph.

PE proximity regions are constructed with respect to the triangle tri with expansion parameter
r ≥ 1, i.e., arcs may exist only for points inside tri. It also provides various descriptions and
quantities about the arcs of the PE-PCD such as number of arcs, arc density, etc.

Vertex regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ)
in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri;
default is M = (1, 1, 1), i.e., the center of mass of tri. When the center is the circumcenter, CC,
the vertex regions are constructed based on the orthogonal projections to the edges, while with any
interior center M, the vertex regions are constructed using the extensions of the lines combining
vertices with M. M-vertex regions are recommended spatial inference, due to geometry invariance
property of the arc density and domination number the PE-PCDs based on uniform data.

See also (Ceyhan (2005); Ceyhan et al. (2006)).

arcsPEtri 41

Usage

arcsPEtri(Xp, tri, r, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; default is M = (1, 1, 1), i.e., the
center of mass of tri.

Value

A list with the elements

type A description of the type of the digraph

parameters Parameters of the digraph, the center M used to construct the vertex regions and
the expansion parameter r.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the support triangle.

tess.name Name of data set (i.e. points from the non-target class) used in the tessellation
of the space (here, vertices of the triangle)

vertices Vertices of the digraph, Xp points

vert.name Name of the data set which constitutes the vertices of the digraph

S Tails (or sources) of the arcs of PE-PCD for 2D data set Xp as vertices of the
digraph

E Heads (or arrow ends) of the arcs of PE-PCD for 2D data set Xp as vertices of
the digraph

mtitle Text for "main" title in the plot of the digraph

quant Various quantities for the digraph: number of vertices, number of partition
points, number of triangles, number of arcs, and arc density.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

42 arcsPEtri

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

arcsPE, arcsAStri, and arcsCStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

r<-1.5 #try also r<-2

Arcs<-arcsPEtri(Xp,Tr,r,M)
#or try with the default center Arcs<-arcsPEtri(Xp,Tr,r); M= (Arcs$param)$cent
Arcs
summary(Arcs)
plot(Arcs)

#can add vertex regions
#but we first need to determine center is the circumcenter or not,
#see the description for more detail.
CC<-circumcenter.tri(Tr)
if (isTRUE(all.equal(M,CC)))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
}
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)

#now we can add the vertex names and annotation
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]+c(-.02,.02,.02,.02,.03,-.03,-.01)
yc<-txt[,2]+c(.02,.02,.03,.06,.04,.05,-.07)
txt.str<-c("A","B","C","M","D1","D2","D3")
text(xc,yc,txt.str)

area.polygon 43

End(Not run)

area.polygon The area of a polygon in Rˆ2

Description

Returns the area of the polygon, h, in the real plane R2; the vertices of the polygon h must be
provided in clockwise or counter-clockwise order, otherwise the function does not yield the area of
the polygon. Also, the polygon could be convex or non-convex. See (Weisstein (2019)).

Usage

area.polygon(h)

Arguments

h A vector of n 2D points, stacked row-wise, each row representing a vertex of
the polygon, where n is the number of vertices of the polygon.

Value

area of the polygon h

Author(s)

Elvan Ceyhan

References

Weisstein EW (2019). “Polygon Area.” From MathWorld — A Wolfram Web Resource, http:
//mathworld.wolfram.com/PolygonArea.html.

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(0.5,.8);
Tr<-rbind(A,B,C);
area.polygon(Tr)

A<-c(0,0); B<-c(1,0); C<-c(.7,.6); D<-c(0.3,.8);
h1<-rbind(A,B,C,D);
#try also h1<-rbind(A,B,D,C) or h1<-rbind(A,C,B,D) or h1<-rbind(A,D,C,B);
area.polygon(h1)

Xlim<-range(h1[,1])
Ylim<-range(h1[,2])
xd<-Xlim[2]-Xlim[1]

http://mathworld.wolfram.com/PolygonArea.html
http://mathworld.wolfram.com/PolygonArea.html

44 as.basic.tri

yd<-Ylim[2]-Ylim[1]

plot(h1,xlab="",ylab="",main="A Convex Polygon with Four Vertices",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(h1)
xc<-rbind(A,B,C,D)[,1]+c(-.03,.03,.02,-.01)
yc<-rbind(A,B,C,D)[,2]+c(.02,.02,.02,.03)
txt.str<-c("A","B","C","D")
text(xc,yc,txt.str)

#when the triangle is degenerate, it gives zero area
B<-A+2*(C-A);
T2<-rbind(A,B,C)
area.polygon(T2)

End(Not run)

as.basic.tri The labels of the vertices of a triangle in the basic triangle form

Description

Labels the vertices of triangle, tri, as ABC so that AB is the longest edge, BC is the second
longest and AC is the shortest edge (the order is as in the basic triangle).

The standard basic triangle form is Tb = T ((0, 0), (1, 0), (c1, c2)) where c1 is in [0, 1/2], c2 > 0 and
(1−c1)

2+c22 ≤ 1. Any given triangle can be mapped to the standard basic triangle by a combination
of rigid body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity
of the points in the original triangle. Hence, standard basic triangle is useful for simulation studies
under the uniformity hypothesis.

The option scaled a logical argument for scaling the resulting triangle or not. If scaled=TRUE, then
the resulting triangle is scaled to be a regular basic triangle, i.e., longest edge having unit length,
else (i.e., if scaled=FALSE which is the default), the new triangle T (A,B,C) is nonscaled, i.e., the
longest edge AB may not be of unit length. The vertices of the resulting triangle (whether scaled or
not) is presented in the order of vertices of the corresponding basic triangle, however when scaled
the triangle is equivalent to the basic triangle Tb up to translation and rotation. That is, this function
converts any triangle to a basic triangle (up to translation and rotation), so that the output triangle
is $T(A’,B’,C’)$ so that edges in decreasing length are $A’B’$, $B’C’$, and $A’C’$. Most of the
times, the resulting triangle will still need to be translated and/or rotated to be in the standard basic
triangle form.

Usage

as.basic.tri(tri, scaled = FALSE)

ASarc.dens.tri 45

Arguments

tri A 3× 2 matrix with each row representing a vertex of the triangle.

scaled A logical argument for scaling the resulting basic triangle. If scaled=TRUE, then
the resulting triangle is scaled to be a regular basic triangle, i.e., longest edge
having unit length, else the new triangle T (A,B,C) is nonscaled. The default
is scaled=FALSE.

Value

A list with three elements

tri The vertices of the basic triangle stacked row-wise and labeled row-wise as A,
B, C.

desc Description of the edges based on the vertices, i.e., "Edges (in decreasing
length are) AB, BC, and AC".

orig.order Row order of the input triangle, tri, when converted to the scaled version of the
basic triangle

Author(s)

Elvan Ceyhan

Examples

Not run:
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);

as.basic.tri(rbind(A,B,C))
as.basic.tri(rbind(B,C,A))

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
as.basic.tri(rbind(A,B,C))
as.basic.tri(rbind(A,C,B))
as.basic.tri(rbind(B,A,C))

End(Not run)

ASarc.dens.tri Arc density of Arc Slice Proximity Catch Digraphs (AS-PCDs) - one
triangle case

46 ASarc.dens.tri

Description

Returns the arc density of AS-PCD whose vertex set is the given 2D numerical data set, Xp, (some
of its members are) in the triangle tri.

AS proximity regions is defined with respect to tri and vertex regions are defined with the center
M="CC" for circumcenter of tri; or M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in
barycentric coordinates in the interior of the triangle tri; default is M="CC" i.e., circumcenter of
tri. For the number of arcs, loops are not allowed so arcs are only possible for points inside tri
for this function.

tri.cor is a logical argument for triangle correction (default is TRUE), if TRUE, only the points inside
the triangle are considered (i.e., digraph induced by these vertices are considered) in computing the
arc density, otherwise all points are considered (for the number of vertices in the denominator of
arc density).

See also (Ceyhan (2005, 2010)).

Usage

ASarc.dens.tri(Xp, tri, M = "CC", tri.cor = FALSE)

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a
2D point in Cartesian coordinates or a 3D point in barycentric coordinates which
serves as a center in the interior of tri; default is M="CC" i.e., the circumcenter
of tri.

tri.cor A logical argument for computing the arc density for only the points inside the
triangle, tri (default is tri.cor=FALSE), i.e., if tri.cor=TRUE only the in-
duced digraph with the vertices inside tri are considered in the computation of
arc density.

Value

Arc density of AS-PCD whose vertices are the 2D numerical data set, Xp; AS proximity regions are
defined with respect to the triangle tri and CC-vertex regions.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

center.nondegPE 47

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

ASarc.dens.tri, CSarc.dens.tri, and num.arcsAStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

set.seed(1)
n<-10 #try also n<-20

Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

num.arcsAStri(Xp,Tr,M)
ASarc.dens.tri(Xp,Tr,M)
ASarc.dens.tri(Xp,Tr,M,tri.cor = FALSE)

ASarc.dens.tri(Xp,Tr,M)

End(Not run)

center.nondegPE Centers for non-degenerate asymptotic distribution of domination
number of Proportional Edge Proximity Catch Digraphs (PE-PCDs)

Description

Returns the centers which yield nondegenerate asymptotic distribution for the domination number
of PE-PCD for uniform data in a triangle, tri= T (v1, v2, v3).

PE proximity region is defined with respect to the triangle tri with expansion parameter r in
(1, 1.5].

Vertex regions are defined with the centers that are output of this function. Centers are stacked
row-wise with row number is corresponding to the vertex row number in tri (see the examples for
an illustration). The center labels 1,2,3 correspond to the vertices M1, M2, and M3 (which are the
three centers for r in (1, 1.5) which becomes center of mass for r = 1.5.).

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).

48 center.nondegPE

Usage

center.nondegPE(tri, r)

Arguments

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be in (1, 1.5] for this function.

Value

The centers (stacked row-wise) which give nondegenerate asymptotic distribution for the domina-
tion number of PE-PCD for uniform data in a triangle, tri.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
r<-1.35

Ms<-center.nondegPE(Tr,r)
Ms

Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,pch=".",xlab="",ylab="",

centerMc 49

main="Centers of nondegeneracy\n for the PE-PCD in a triangle",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Ms,pch=".",col=1)
polygon(Ms,lty = 2)

xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.03)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

xc<-Ms[,1]+c(-.04,.04,.03)
yc<-Ms[,2]+c(.02,.02,.05)
txt.str<-c("M1","M2","M3")
text(xc,yc,txt.str)

End(Not run)

centerMc Parameterized center of an interval

Description

Returns the (parameterized) center, Mc, of the interval, int= (a, b), parameterized by c ∈ (0, 1)
so that 100c % of the length of interval is to the left of Mc and 100(1 − c) % of the length of the
interval is to the right of Mc. That is, for the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

See also (Ceyhan (2012, 2016)).

Usage

centerMc(int, c = 0.5)

Arguments

int A vector with two entries representing an interval.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

(parameterized) center inside int

Author(s)

Elvan Ceyhan

50 centersMc

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch Di-
graph Based on Uniform Data.” Metrika, 75(6), 761-793.

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

centersMc

Examples

c<-.4
a<-0; b<-10
int = c(a,b)
centerMc(int,c)

c<-.3
a<-2; b<-4; int<-c(a,b)
centerMc(int,c)

centersMc Parameterized centers of intervals

Description

Returns the centers of the intervals based on 1D points in Yp parameterized by c ∈ (0, 1) so that
100c % of the length of interval is to the left of Mc and 100(1 − c) % of the length of the interval
is to the right of Mc. That is, for an interval (a, b), the parameterized center is Mc = a+ c(b− a)
Yp is a vector of 1D points, not necessarily sorted.

See also (Ceyhan (2012, 2016)).

Usage

centersMc(Yp, c = 0.5)

Arguments

Yp A vector real numbers that constitute the end points of intervals.

c A positive real number in (0, 1) parameterizing the centers inside the intervals
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

(parameterized) centers of the intervals based on Yp points as a vector

circumcenter.basic.tri 51

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch Di-
graph Based on Uniform Data.” Metrika, 75(6), 761-793.

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

centerMc

Examples

Not run:
n<-10
c<-.4 #try also c<-runif(1)
Yp<-runif(n)
centersMc(Yp,c)

c<-.3 #try also c<-runif(1)
Yp<-runif(n,0,10)
centersMc(Yp,c)

End(Not run)

circumcenter.basic.tri

Circumcenter of a standard basic triangle form

Description

Returns the circumcenter of a standard basic triangle form Tb = T ((0, 0), (1, 0), (c1, c2)) given c1,
c2 where c1 is in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Any given triangle can be mapped to the standard basic triangle form by a combination of rigid
body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the
points in the original triangle. Hence, standard basic triangle form is useful for simulation studies
under the uniformity hypothesis.

See (Weisstein (2019); Ceyhan (2010)) for triangle centers and (Ceyhan et al. (2006); Ceyhan et al.
(2007); Ceyhan (2011)) for the standard basic triangle form.

Usage

circumcenter.basic.tri(c1, c2)

52 circumcenter.basic.tri

Arguments

c1, c2 Positive real numbers representing the top vertex in standard basic triangle form
Tb = T ((0, 0), (1, 0), (c1, c2)), c1 must be in [0, 1/2], c2 > 0 and (1 − c1)

2 +
c22 ≤ 1.

Value

circumcenter of the standard basic triangle form Tb = T ((0, 0), (1, 0), (c1, c2)) given c1, c2 as the
arguments of the function.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

Weisstein EW (2019). “Triangle Centers.” From MathWorld — A Wolfram Web Resource, http:
//mathworld.wolfram.com/TriangleCenter.html.

See Also

circumcenter.tri

Examples

Not run:
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
#the vertices of the standard basic triangle form Tb
Tb<-rbind(A,B,C)
CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
CC

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tb[,1])

http://mathworld.wolfram.com/TriangleCenter.html
http://mathworld.wolfram.com/TriangleCenter.html

circumcenter.tetra 53

Ylim<-range(Tb[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

par(pty = "s")
plot(A,pch=".",asp=1,xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(rbind(CC))
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.04,.03,.06,.06,-.03,0)
yc<-txt[,2]+c(.02,.02,.03,-.03,.02,.04,-.03)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

#for an obtuse triangle
c1<-.4; c2<-.3;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
#the vertices of the standard basic triangle form Tb
Tb<-rbind(A,B,C)
CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
CC

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tb[,1],CC[1])
Ylim<-range(Tb[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

par(pty = "s")
plot(A,pch=".",asp=1,xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(rbind(CC))
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.03,.03,.07,.07,-.05,0)
yc<-txt[,2]+c(.02,.02,.04,-.03,.03,.04,.06)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

circumcenter.tetra Circumcenter of a general tetrahedron

54 circumcenter.tetra

Description

Returns the circumcenter a given tetrahedron th with vertices stacked row-wise.

Usage

circumcenter.tetra(th)

Arguments

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

Value

circumcenter of the tetrahedron th

Author(s)

Elvan Ceyhan

See Also

circumcenter.tri

Examples

Not run:
set.seed(123)
A<-c(0,0,0)+runif(3,-.2,.2);
B<-c(1,0,0)+runif(3,-.2,.2);
C<-c(1/2,sqrt(3)/2,0)+runif(3,-.2,.2);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)+runif(3,-.2,.2);
tetra<-rbind(A,B,C,D)

CC<-circumcenter.tetra(tetra)
CC

Xlim<-range(tetra[,1],CC[1])
Ylim<-range(tetra[,2],CC[2])
Zlim<-range(tetra[,3],CC[3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

plot3D::scatter3D(tetra[,1],tetra[,2],tetra[,3], phi =0,theta=40, bty = "g",
main="Illustration of the Circumcenter\n in a Tetrahedron",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),

pch = 20, cex = 1, ticktype = "detailed")
#add the vertices of the tetrahedron
plot3D::points3D(CC[1],CC[2],CC[3], add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)

circumcenter.tri 55

plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)

D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CC,6),byrow = TRUE,ncol=3)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lty = 2)

plot3D::text3D(CC[1],CC[2],CC[3], labels="CC", add=TRUE)

End(Not run)

circumcenter.tri Circumcenter of a general triangle

Description

Returns the circumcenter a given triangle, tri, with vertices stacked row-wise. See (Weisstein
(2019); Ceyhan (2010)) for triangle centers.

Usage

circumcenter.tri(tri)

Arguments

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

circumcenter of the triangle tri

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Weisstein EW (2019). “Triangle Centers.” From MathWorld — A Wolfram Web Resource, http:
//mathworld.wolfram.com/TriangleCenter.html.

See Also

circumcenter.basic.tri

http://mathworld.wolfram.com/TriangleCenter.html
http://mathworld.wolfram.com/TriangleCenter.html

56 cl2CCvert.reg

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C); #the vertices of the triangle Tr

CC<-circumcenter.tri(Tr) #the circumcenter
CC

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1],CC[1])
Ylim<-range(Tr[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,asp=1,pch=".",xlab="",ylab="",main="Circumcenter of a triangle",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(rbind(CC))
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.08,.08,.08,.12,-.09,-.1,-.09)
yc<-txt[,2]+c(.02,-.02,.03,-.06,.02,.06,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C); #the vertices of the equilateral triangle Te
circumcenter.tri(Te) #the circumcenter

A<-c(0,0); B<-c(0,1); C<-c(2,0);
Tr<-rbind(A,B,C); #the vertices of the triangle T
circumcenter.tri(Tr) #the circumcenter

End(Not run)

cl2CCvert.reg The closest points to circumcenter in each CC-vertex region in a tri-
angle

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp, to circum-
center, CC, in each CC-vertex region in the triangle tri = T (A,B,C) =(vertex 1,vertex 2,vertex
3).

cl2CCvert.reg 57

ch.all.intri is for checking whether all data points are inside tri (default is FALSE). If some
of the data points are not inside tri and ch.all.intri=TRUE, then the function yields an error
message. If some of the data points are not inside tri and ch.all.intri=FALSE, then the function
yields the closest points to CC among the data points in each CC-vertex region of tri (yields NA
if there are no data points inside tri).

See also (Ceyhan (2005, 2012)).

Usage

cl2CCvert.reg(Xp, tri, ch.all.intri = FALSE)

Arguments

Xp A set of 2D points representing the set of data points.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

ch.all.intri A logical argument (default=FALSE) to check whether all data points are inside
the triangle tri. So, if it is TRUE, the function checks if all data points are inside
the closure of the triangle (i.e., interior and boundary combined) else it does not.

Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C = 3 (correspond to row number in
Extremum Points).

txt2 A short description of the distances as "Distances from closest points to
CC ..."

type Type of the extrema points

mtitle The "main" title for the plot of the extrema

ext The extrema points, here, closest points to CC in each CC-vertex region

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is tri

cent The center point used for construction of vertex regions

ncent Name of the center, cent, it is "CC" for this function

regions Vertex regions inside the triangle, tri, provided as a list

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"

region.centers Centers of mass of the vertex regions inside tri

dist2ref Distances from closest points in each CC-vertex region to CC.

Author(s)

Elvan Ceyhan

58 cl2CCvert.reg

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

cl2CCvert.reg.basic.tri, cl2edges.vert.reg.basic.tri, cl2edgesMvert.reg, cl2edgesCMvert.reg,
and fr2edgesCMedge.reg.std.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

Ext<-cl2CCvert.reg(Xp,Tr)
Ext
summary(Ext)
plot(Ext)

c2CC<-Ext

CC<-circumcenter.tri(Tr) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",asp=1,xlab="",ylab="",
main="Closest Points in CC-Vertex Regions \n to the Circumcenter",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(c2CC$ext,pch=4,col=2)

txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.07,.08,.06,.12,-.1,-.1,-.09)

cl2CCvert.reg.basic.tri 59

yc<-txt[,2]+c(.02,-.02,.03,.0,.02,.06,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

Xp2<-rbind(Xp,c(.2,.4))
cl2CCvert.reg(Xp2,Tr,ch.all.intri = FALSE)
#gives an error message if ch.all.intri = TRUE since not all points are in the triangle

End(Not run)

cl2CCvert.reg.basic.tri

The closest points to circumcenter in each CC-vertex region in a stan-
dard basic triangle

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp, to circum-
center, CC, in each CC-vertex region in the standard basic triangle Tb = T (A = (0, 0), B =
(1, 0), C = (c1, c2)) =(vertex 1,vertex 2,vertex 3). ch.all.intri is for checking whether all data
points are inside Tb (default is FALSE).

See also (Ceyhan (2005, 2012)).

Usage

cl2CCvert.reg.basic.tri(Xp, c1, c2, ch.all.intri = FALSE)

Arguments

Xp A set of 2D points representing the set of data points.

c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle.
adjacent to the shorter edges; c1 must be in [0, 1/2], c2 > 0 and (1−c1)

2+c22 ≤
1

ch.all.intri A logical argument for checking whether all data points are inside Tb (default is
FALSE).

Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C = 3 (correspond to row number in
Extremum Points).

txt2 A short description of the distances as "Distances from closest points to
...".

type Type of the extrema points

mtitle The "main" title for the plot of the extrema

60 cl2CCvert.reg.basic.tri

ext The extrema points, here, closest points to CC in each vertex region.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is Tb.

cent The center point used for construction of vertex regions

ncent Name of the center, cent, it is "CC" for this function.

regions Vertex regions inside the triangle, Tb, provided as a list.

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"

region.centers Centers of mass of the vertex regions inside Tb.

dist2ref Distances from closest points in each vertex region to CC.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

cl2CCvert.reg, cl2edges.vert.reg.basic.tri, cl2edgesMvert.reg, cl2edgesCMvert.reg,
and fr2edgesCMedge.reg.std.tri

Examples

Not run:
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-15

set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g

Ext<-cl2CCvert.reg.basic.tri(Xp,c1,c2)
Ext
summary(Ext)
plot(Ext)

c2CC<-Ext

cl2edges.std.tri 61

CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",asp=1,xlab="",ylab="",
main="Closest Points in CC-Vertex Regions \n to the Circumcenter",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(c2CC$ext,pch=4,col=2)

txt<-rbind(Tb,CC,Ds)
xc<-txt[,1]+c(-.03,.03,.02,.07,.06,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,-.01,.03,.03,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

Xp2<-rbind(Xp,c(.2,.4))
cl2CCvert.reg.basic.tri(Xp2,c1,c2,ch.all.intri = FALSE)
#gives an error message if ch.all.intri = TRUE
#since not all points are in the standard basic triangle

End(Not run)

cl2edges.std.tri The closest points in a data set to edges in the standard equilateral
triangle

Description

An object of class "Extrema". Returns the closest points from the 2D data set, Xp, to the edges in
the standard equilateral triangle Te = T (A = (0, 0), B = (1, 0), C = (1/2,

√
3/2)).

ch.all.intri is for checking whether all data points are inside Te (default is FALSE).

If some of the data points are not inside Te and ch.all.intri=TRUE, then the function yields an
error message. If some of the data points are not inside Te and ch.all.intri=FALSE, then the
function yields the closest points to edges among the data points inside Te (yields NA if there are no
data points inside Te).

See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan and Priebe (2007)).

Usage

cl2edges.std.tri(Xp, ch.all.intri = FALSE)

62 cl2edges.std.tri

Arguments

Xp A set of 2D points representing the set of data points.

ch.all.intri A logical argument (default=FALSE) to check whether all data points are inside
the standard equilateral triangle Te. So, if it is TRUE, the function checks if
all data points are inside the closure of the triangle (i.e., interior and boundary
combined) else it does not.

Value

A list with the elements

txt1 Edge labels as AB = 3, BC = 1, and AC = 2 for Te (correspond to row
number in Extremum Points).

txt2 A short description of the distances as "Distances to Edges ...".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main" title for the plot of the extrema

ext The extrema points, i.e., closest points to edges

X The input data, Xp, which can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, i.e., the standard equilateral triangle Te

cent The center point used for construction of edge regions, not required for this
extrema, hence it is NULL for this function

ncent Name of the center, cent, not required for this extrema, hence it is NULL for this
function

regions Edge regions inside the triangle, Te, not required for this extrema, hence it is
NULL for this function

region.names Names of the edge regions, not required for this extrema, hence it is NULL for
this function

region.centers Centers of mass of the edge regions inside Te, not required for this extrema,
hence it is NULL for this function

dist2ref Distances from closest points in each edge region to the corresponding edge

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family

cl2edges.std.tri 63

of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

cl2edges.vert.reg.basic.tri, cl2edgesMvert.reg, cl2edgesCMvert.reg and fr2edgesCMedge.reg.std.tri

Examples

Not run:
n<-20 #try also n<-100
Xp<-runif.std.tri(n)$gen.points

Ext<-cl2edges.std.tri(Xp)
Ext
summary(Ext)
plot(Ext,asp=1)

ed.clo<-Ext

A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)
CM<-(A+B+C)/3
p1<-(A+B)/2
p2<-(B+C)/2
p3<-(A+C)/2

Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp,xlab="",ylab="")
points(ed.clo$ext,pty=2,pch=4,col="red")

txt<-rbind(Te,p1,p2,p3)
xc<-txt[,1]+c(-.03,.03,.03,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,0,0,0)
txt.str<-c("A","B","C","re=1","re=2","re=3")
text(xc,yc,txt.str)

End(Not run)

64 cl2edges.vert.reg.basic.tri

cl2edges.vert.reg.basic.tri

The closest points among a data set in the vertex regions to the corre-
sponding edges in a standard basic triangle

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp, to edge i in
M-vertex region i for i = 1, 2, 3 in the standard basic triangle Tb = T (A = (0, 0), B = (1, 0), C =
(c1, c2)) where c1 is in [0, 1/2], c2 > 0 and (1 − c1)

2 + c22 ≤ 1. Vertex labels are A = 1, B = 2,
and C = 3, and corresponding edge labels are BC = 1, AC = 2, and AB = 3.

Vertex regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in
barycentric coordinates in the interior of the standard basic triangle Tb or based on the circumcenter
of Tb.

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence, standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

See also (Ceyhan (2005, 2010)).

Usage

cl2edges.vert.reg.basic.tri(Xp, c1, c2, M)

Arguments

Xp A set of 2D points representing the set of data points.

c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; c1 must be in [0, 1/2], c2 > 0 and (1−c1)

2+c22 ≤
1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard basic triangle Tb or the
circumcenter of Tb.

Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C = 3 (correspond to row number in
Extremum Points).

txt2 A short description of the distances as "Distances to Edges in the Respective
\eqn{M}-Vertex Regions".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main" title for the plot of the extrema

cl2edges.vert.reg.basic.tri 65

ext The extrema points, here, closest points to edges in the corresponding vertex
region.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is Tb.

cent The center point used for construction of vertex regions

ncent Name of the center, cent, it is "M" or "CC" for this function

regions Vertex regions inside the triangle, Tb.

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"

region.centers Centers of mass of the vertex regions inside Tb.

dist2ref Distances of closest points in the vertex regions to corresponding edges.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

See Also

cl2edgesCMvert.reg, cl2edgesMvert.reg, and cl2edges.std.tri

Examples

Not run:
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);

set.seed(1)
n<-20
Xp<-runif.basic.tri(n,c1,c2)$g

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.3)

Ext<-cl2edges.vert.reg.basic.tri(Xp,c1,c2,M)
Ext
summary(Ext)

66 cl2edgesCCvert.reg

plot(Ext)

cl2e<-Ext

Ds<-prj.cent2edges.basic.tri(c1,c2,M)

Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tb,pch=".",xlab="",ylab="",
main="Closest Points in M-Vertex Regions \n to the Opposite Edges",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(Xp,pch=1,col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(cl2e$ext,pch=3,col=2)

xc<-Tb[,1]+c(-.02,.02,0.02)
yc<-Tb[,2]+c(.02,.02,.02)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.03,0)
yc<-txt[,2]+c(-.02,.02,.02,-.03)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

cl2edgesCCvert.reg The closest points in a data set to edges in each CC-vertex region in
a triangle

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp, to edge j
in CC-vertex region j for j = 1, 2, 3 in the triangle, tri= T (A,B,C), where CC stands for
circumcenter. Vertex labels are A = 1, B = 2, and C = 3, and corresponding edge labels are
BC = 1, AC = 2, and AB = 3. Function yields NA if there are no data points in a CC-vertex
region.

See also (Ceyhan (2005, 2010)).

Usage

cl2edgesCCvert.reg(Xp, tri)

cl2edgesCCvert.reg 67

Arguments

Xp A set of 2D points representing the set of data points.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C = 3 (correspond to row number in
Extremum Points).

txt2 A short description of the distances as "Distances to Edges in the Respective
CC-Vertex Regions".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main" title for the plot of the extrema

ext The extrema points, here, closest points to edges in the respective vertex region.

ind.ext Indices of the extrema points,ext.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is tri

cent The center point used for construction of vertex regions

ncent Name of the center, cent, it is "CC" for this function

regions Vertex regions inside the triangle, tri, provided as a list

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"

region.centers Centers of mass of the vertex regions inside tri

dist2ref Distances of closest points in the vertex regions to corresponding edges

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

cl2edges.vert.reg.basic.tri, cl2edgesCMvert.reg, cl2edgesMvert.reg, and cl2edges.std.tri

68 cl2edgesCMvert.reg

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

n<-20 #try also n<-100
set.seed(1)
Xp<-runif.tri(n,Tr)$g

Ext<-cl2edgesCCvert.reg(Xp,Tr)
Ext
summary(Ext)
plot(Ext)

cl2e<-Ext

CC<-circumcenter.tri(Tr);
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1],Xp[,1],CC[1])
Ylim<-range(Tr[,2],Xp[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,asp=1,pch=".",xlab="",ylab="",
main="Closest Points in CC-Vertex Regions \n to the Opposite Edges",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)

xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

points(Xp,pch=1,col=1)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(cl2e$ext,pch=3,col=2)

txt<-rbind(CC,Ds)
xc<-txt[,1]+c(-.04,.04,-.03,0)
yc<-txt[,2]+c(-.05,.04,.06,-.08)
txt.str<-c("CC","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

cl2edgesCMvert.reg 69

cl2edgesCMvert.reg The closest points in a data set to edges in each CM -vertex region in
a triangle

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp, to edge j in
CM -vertex region j for j = 1, 2, 3 in the triangle, tri= T (A,B,C), where CM stands for center
of mass. Vertex labels are A = 1, B = 2, and C = 3, and corresponding edge labels are BC = 1,
AC = 2, and AB = 3. Function yields NA if there are no data points in a CM -vertex region.

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2010, 2011)).

Usage

cl2edgesCMvert.reg(Xp, tri)

Arguments

Xp A set of 2D points representing the set of data points.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C = 3 (correspond to row number in
Extremum Points).

txt2 A short description of the distances as "Distances to Edges in the Respective
CM-Vertex Regions".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main" title for the plot of the extrema

ext The extrema points, here, closest points to edges in the respective vertex region.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is tri

cent The center point used for construction of vertex regions

ncent Name of the center, cent, it is "CM" for this function

regions Vertex regions inside the triangle, tri, provided as a list

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"

region.centers Centers of mass of the vertex regions inside tri

dist2ref Distances of closest points in the vertex regions to corresponding edges

70 cl2edgesCMvert.reg

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

See Also

cl2edges.vert.reg.basic.tri, cl2edgesCCvert.reg, cl2edgesMvert.reg, and cl2edges.std.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

n<-20 #try also n<-100
set.seed(1)
Xp<-runif.tri(n,Tr)$g

Ext<-cl2edgesCMvert.reg(Xp,Tr)
Ext
summary(Ext)
plot(Ext)

cl2e<-Ext

CM<-(A+B+C)/3;
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,pch=".",xlab="",ylab="",
main="Closest Points in CM-Vertex Regions \n to the Opposite Edges",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))

cl2edgesMvert.reg 71

polygon(Tr)

xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

points(Xp,pch=1,col=1)
L<-matrix(rep(CM,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(cl2e$ext,pch=3,col=2)

txt<-rbind(CM,Ds)
xc<-txt[,1]+c(-.04,.04,-.03,0)
yc<-txt[,2]+c(-.05,.04,.06,-.08)
txt.str<-c("CM","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

cl2edgesMvert.reg The closest points among a data set in the vertex regions to the respec-
tive edges in a triangle

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp, to edge i in
M-vertex region i for i = 1, 2, 3 in the triangle tri= T (A,B,C). Vertex labels are A = 1, B = 2,
and C = 3, and corresponding edge labels are BC = 1, AC = 2, and AB = 3.

Vertex regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in
barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri.

Two methods of finding these extrema are provided in the function, which can be chosen in the
logical argument alt, whose default is alt=FALSE. When alt=FALSE, the function sequentially
finds the vertex region of the data point and then updates the minimum distance to the opposite
edge and the relevant extrema objects, and when alt=TRUE, it first partitions the data set according
which vertex regions they reside, and then finds the minimum distance to the opposite edge and the
relevant extrema on each partition. Both options yield equivalent results for the extrema points and
indices, with the default being slightly ~ 20

See also (Ceyhan (2005, 2010)).

Usage

cl2edgesMvert.reg(Xp, tri, M, alt = FALSE)

72 cl2edgesMvert.reg

Arguments

Xp A set of 2D points representing the set of data points.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter of
tri; which may be entered as "CC" as well;

alt A logical argument for alternative method of finding the closest points to the
edges, default alt=FALSE. When alt=FALSE, the function sequentially finds the
vertex region of the data point and then the minimum distance to the opposite
edge and the relevant extrema objects, and when alt=TRUE, it first partitions the
data set according which vertex regions they reside, and then finds the minimum
distance to the opposite edge and the relevant extrema on each partition.

Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C = 3 (correspond to row number in
Extremum Points).

txt2 A short description of the distances as "Distances to Edges in the Respective
\eqn{M}-Vertex Regions".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main" title for the plot of the extrema

ext The extrema points, here, closest points to edges in the respective vertex region.

ind.ext The data indices of extrema points, ext.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is tri

cent The center point used for construction of vertex regions

ncent Name of the center, cent, it is "M" or "CC" for this function

regions Vertex regions inside the triangle, tri, provided as a list

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"

region.centers Centers of mass of the vertex regions inside tri

dist2ref Distances of closest points in the M-vertex regions to corresponding edges.

Author(s)

Elvan Ceyhan

cl2edgesMvert.reg 73

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

See Also

cl2edges.vert.reg.basic.tri, cl2edgesCMvert.reg, and cl2edges.std.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);

Tr<-rbind(A,B,C);
n<-20 #try also n<-100

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

Ext<-cl2edgesMvert.reg(Xp,Tr,M)
Ext
summary(Ext)
plot(Ext)

cl2e<-Ext

Ds<-prj.cent2edges(Tr,M)

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates

plot(Tr,pch=".",xlab="",ylab="",
main="Closest Points in M-Vertex Regions \n to the Opposite Edges",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=1,col=1)
L<-rbind(M,M,M); R<-Ds

74 cl2faces.vert.reg.tetra

segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(cl2e$ext,pch=3,col=2)

xc<-Tr[,1]+c(-.02,.03,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.05,-.02,-.01)
yc<-txt[,2]+c(-.03,.02,.08,-.07)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

cl2faces.vert.reg.tetra

The closest points among a data set in the vertex regions to the respec-
tive faces in a tetrahedron

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp, to face i in
M-vertex region i for i = 1, 2, 3, 4 in the tetrahedron th = T (A,B,C,D). Vertex labels are A = 1,
B = 2, C = 3, and D = 4 and corresponding face labels are BCD = 1, ACD = 2, ABD = 3,
and ABC = 4.

Vertex regions are based on center M which can be the center of mass ("CM") or circumcenter ("CC")
of th.

Usage

cl2faces.vert.reg.tetra(Xp, th, M = "CM")

Arguments

Xp A set of 3D points representing the set of data points.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

cl2faces.vert.reg.tetra 75

Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, C = 3, and D = 4 (correspond to row number
in Extremum Points).

txt2 A short description of the distances as "Distances from Closest Points to
Faces ...".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main" title for the plot of the extrema

ext The extrema points, here, closest points to faces in the respective vertex region.

ind.ext The data indices of extrema points, ext.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is th

cent The center point used for construction of vertex regions, it is circumcenter of
center of mass for this function

ncent Name of the center, it is circumcenter "CC" or center of mass "CM" for this
function.

regions Vertex regions inside the tetrahedron th provided as a list.

region.names Names of the vertex regions as "vr=1","vr=2","vr=3","vr=4"

region.centers Centers of mass of the vertex regions inside th.

dist2ref Distances from closest points in each vertex region to the corresponding face.

Author(s)

Elvan Ceyhan

See Also

fr2vertsCCvert.reg, fr2edgesCMedge.reg.std.tri, fr2vertsCCvert.reg.basic.tri and kfr2vertsCCvert.reg

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
set.seed(1)
tetra<-rbind(A,B,C,D)+matrix(runif(12,-.25,.25),ncol=3)
n<-10 #try also n<-20
Cent<-"CC" #try also "CM"

n<-20 #try also n<-100
Xp<-runif.tetra(n,tetra)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))

76 cl2Mc.int

Ext<-cl2faces.vert.reg.tetra(Xp,tetra,Cent)
Ext
summary(Ext)
plot(Ext)

clf<-Ext$ext

if (Cent=="CC") {M<-circumcenter.tetra(tetra)}
if (Cent=="CM") {M<-apply(tetra,2,mean)}

Xlim<-range(tetra[,1],Xp[,1],M[1])
Ylim<-range(tetra[,2],Xp[,2],M[2])
Zlim<-range(tetra[,3],Xp[,3],M[3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3], phi =0,theta=40, bty = "g",
main="Closest Pointsin CC-Vertex Regions \n to the Opposite Faces",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),

pch = 20, cex = 1, ticktype = "detailed")
#add the vertices of the tetrahedron
plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)
plot3D::points3D(clf[,1],clf[,2],clf[,3], pch=4,col="red", add=TRUE)

plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)

#for center of mass use #Cent<-apply(tetra,2,mean)
D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2;
D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-rbind(M,M,M,M,M,M)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lty=2)

End(Not run)

cl2Mc.int The closest points to center in each vertex region in an interval

Description

An object of class "Extrema". Returns the closest data points among the data set, Xp, in each Mc-
vertex region i.e., finds the closest points from right and left to Mc among points of the 1D data set
Xp which reside in in the interval int= (a, b).

Mc is based on the centrality parameter c ∈ (0, 1), so that 100c % of the length of interval is to
the left of Mc and 100(1 − c) % of the length of the interval is to the right of Mc. That is, for the

cl2Mc.int 77

interval (a, b), Mc = a + c(b − a). If there are no points from Xp to the left of Mc in the interval,
then it yields NA, and likewise for the right of Mc in the interval.

See also (Ceyhan (2012)).

Usage

cl2Mc.int(Xp, int, c)

Arguments

Xp A set or vector of 1D points from which closest points to Mc are found in the
interval int.

int A vector of two real numbers representing an interval.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b).
For the interval, int= (a, b), the parameterized center is Mc = a+ c(b− a).

Value

A list with the elements

txt1 Vertex Labels are a = 1 and b = 2 for the interval (a, b).

txt2 A short description of the distances as "Distances from ..."

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main" title for the plot of the extrema

ext The extrema points, here, closest points to Mc in each vertex region

ind.ext The data indices of extrema points, ext.

X The input data vector, Xp.

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is int.

cent The (parameterized) center point used for construction of vertex regions.

ncent Name of the (parameterized) center, cent, it is "Mc" for this function.

regions Vertex regions inside the interval, int, provided as a list.

region.names Names of the vertex regions as "vr=1", "vr=2"

region.centers Centers of mass of the vertex regions inside int.

dist2ref Distances from closest points in each vertex region to Mc.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

78 CSarc.dens.test

See Also

cl2CCvert.reg.basic.tri and cl2CCvert.reg

Examples

Not run:
c<-.4
a<-0; b<-10; int<-c(a,b)

Mc<-centerMc(int,c)

nx<-10
xr<-range(a,b,Mc)
xf<-(xr[2]-xr[1])*.5

Xp<-runif(nx,a,b)

Ext<-cl2Mc.int(Xp,int,c)
Ext
summary(Ext)
plot(Ext)

cMc<-Ext

Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]

plot(cbind(a,0),xlab="",pch=".",
main=paste("Closest Points in Mc-Vertex Regions \n to the Center Mc = ",Mc,sep=""),

xlim=Xlim+xd*c(-.05,.05))
abline(h=0)

abline(v=c(a,b,Mc),col=c(1,1,2),lty=2)
points(cbind(Xp,0))
points(cbind(c(cMc$ext),0),pch=4,col=2)
text(cbind(c(a,b,Mc)-.02*xd,-0.05),c("a","b",expression(M[c])))

End(Not run)

CSarc.dens.test A test of segregation/association based on arc density of Central Sim-
ilarity Proximity Catch Digraph (CS-PCD) for 2D data

Description

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of
complete spatial randomness (CSR) or uniformity of Xp points in the convex hull of Yp points
against the alternatives of segregation (where Xp points cluster away from Yp points) and association

CSarc.dens.test 79

(where Xp points cluster around Yp points) based on the normal approximation of the arc density of
the CS-PCD for uniform 2D data in the convex hull of Yp points.

The function yields the test statistic, p-value for the corresponding alternative, the confidence
interval, estimate and null value for the parameter of interest (which is the arc density), and method
and name of the data set used.

Under the null hypothesis of uniformity of Xp points in the convex hull of Yp points, arc density
of CS-PCD whose vertices are Xp points equals to its expected value under the uniform distribu-
tion and alternative could be two-sided, or left-sided (i.e., data is accumulated around the Yp
points, or association) or right-sided (i.e., data is accumulated around the centers of the triangles, or
segregation).

CS proximity region is constructed with the expansion parameter t > 0 and CM -edge regions (i.e.,
the test is not available for a general center M at this version of the function).

Caveat: This test is currently a conditional test, where Xp points are assumed to be random,
while Yp points are assumed to be fixed (i.e., the test is conditional on Yp points). Furthermore, the
test is a large sample test when Xp points are substantially larger than Yp points, say at least 5 times
more. This test is more appropriate when supports of Xp and Yp has a substantial overlap. Currently,
the Xp points outside the convex hull of Yp points are handled with a convex hull correction factor
(see the description below and the function code.) However, in the special case of no Xp points in
the convex hull of Yp points, arc density is taken to be 1, as this is clearly a case of segregation.
Removing the conditioning and extending it to the case of non-concurring supports is an ongoing
line of research of the author of the package.

ch.cor is for convex hull correction (default is "no convex hull correction", i.e., ch.cor=FALSE)
which is recommended when both Xp and Yp have the same rectangular support.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

CSarc.dens.test(
Xp,
Yp,
t,
ch.cor = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95

)

Arguments

Xp A set of 2D points which constitute the vertices of the CS-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

t A positive real number which serves as the expansion parameter in CS proximity
region.

ch.cor A logical argument for convex hull correction, default ch.cor=FALSE, recom-
mended when both Xp and Yp have the same rectangular support.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater".

80 CSarc.dens.test

conf.level Level of the confidence interval, default is 0.95, for the arc density of CS-PCD
based on the 2D data set Xp.

Value

A list with the elements

statistic Test statistic

p.value The p-value for the hypothesis test for the corresponding alternative

conf.int Confidence interval for the arc density at the given confidence level conf.level
and depends on the type of alternative.

estimate Estimate of the parameter, i.e., arc density

null.value Hypothesized value for the parameter, i.e., the null arc density, which is usually
the mean arc density under uniform distribution.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater"

method Description of the hypothesis test

data.name Name of the data set

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

PEarc.dens.test and CSarc.dens.test1D

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))

CSarc.dens.test.int 81

#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

plotDelaunay.tri(Xp,Yp,xlab="",ylab = "")

CSarc.dens.test(Xp,Yp,t=.5)
CSarc.dens.test(Xp,Yp,t=.5,ch=TRUE)
#try also t=1.0 and 1.5 above

End(Not run)

CSarc.dens.test.int A test of uniformity of 1D data in a given interval based on Central
Similarity Proximity Catch Digraph (CS-PCD)

Description

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of
uniformity of 1D data in one interval based on the normal approximation of the arc density of the
CS-PCD with expansion parameter t > 0 and centrality parameter c ∈ (0, 1).

The function yields the test statistic, p-value for the corresponding alternative, the confidence
interval, estimate and null value for the parameter of interest (which is the arc density), and method
and name of the data set used.

The null hypothesis is that data is uniform in a finite interval (i.e., arc density of CS-PCD equals to
its expected value under uniform distribution) and alternative could be two-sided, or left-sided
(i.e., data is accumulated around the end points) or right-sided (i.e., data is accumulated around the
mid point or center Mc).

See also (Ceyhan (2016)).

Usage

CSarc.dens.test.int(
Xp,
int,
t,
c = 0.5,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95

)

Arguments

Xp A set or vector of 1D points which constitute the vertices of CS-PCD.

int A vector of two real numbers representing an interval.

t A positive real number which serves as the expansion parameter in CS proximity
region.

82 CSarc.dens.test.int

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater".

conf.level Level of the confidence interval, default is 0.95, for the arc density of CS-PCD
based on the 1D data set Xp.

Value

A list with the elements

statistic Test statistic

p.value The p-value for the hypothesis test for the corresponding alternative

conf.int Confidence interval for the arc density at the given level conf.level and de-
pends on the type of alternative.

estimate Estimate of the parameter, i.e., arc density

null.value Hypothesized value for the parameter, i.e., the null arc density, which is usually
the mean arc density under uniform distribution.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater"

method Description of the hypothesis test

data.name Name of the data set

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

PEarc.dens.test.int

Examples

c<-.4
t<-2
a<-0; b<-10; int<-c(a,b)

n<-10
Xp<-runif(n,a,b)

num.arcsCSmid.int(Xp,int,t,c)
CSarc.dens.test.int(Xp,int,t,c)

CSarc.dens.test1D 83

num.arcsCSmid.int(Xp,int,t,c=.3)
CSarc.dens.test.int(Xp,int,t,c=.3)

num.arcsCSmid.int(Xp,int,t=1.5,c)
CSarc.dens.test.int(Xp,int,t=1.5,c)

Xp<-runif(n,a-1,b+1)
num.arcsCSmid.int(Xp,int,t,c)
CSarc.dens.test.int(Xp,int,t,c)

c<-.4
t<-.5
a<-0; b<-10; int<-c(a,b)
n<-10 #try also n<-20
Xp<-runif(n,a,b)

CSarc.dens.test.int(Xp,int,t,c)

CSarc.dens.test1D A test of segregation/association based on arc density of Central Sim-
ilarity Proximity Catch Digraph (CS-PCD) for 1D data

Description

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of
complete spatial randomness (CSR) or uniformity of Xp points in the range (i.e., range) of Yp points
against the alternatives of segregation (where Xp points cluster away from Yp points) and association
(where Xp points cluster around Yp points) based on the normal approximation of the arc density of
the CS-PCD for uniform 1D data.

The function yields the test statistic, p-value for the corresponding alternative, the confidence
interval, estimate and null value for the parameter of interest (which is the arc density), and method
and name of the data set used.

Under the null hypothesis of uniformity of Xp points in the range of Yp points, arc density of CS-
PCD whose vertices are Xp points equals to its expected value under the uniform distribution and
alternative could be two-sided, or left-sided (i.e., data is accumulated around the Yp points, or
association) or right-sided (i.e., data is accumulated around the centers of the intervals, or segrega-
tion).

CS proximity region is constructed with the expansion parameter t > 0 and centrality parameter
c which yields M -vertex regions. More precisely, for a middle interval (y(i), y(i+1)), the center is
M = y(i) + c(y(i+1) − y(i)) for the centrality parameter c ∈ (0, 1). This test is more appropriate
when supports of Xp and Yp has a substantial overlap.

end.int.cor is for end interval correction, (default is "no end interval correction", i.e., end.int.cor=FALSE),
recommended when both Xp and Yp have the same interval support.

84 CSarc.dens.test1D

Usage

CSarc.dens.test1D(
Xp,
Yp,
t,
c = 0.5,
support.int = NULL,
end.int.cor = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95

)

Arguments

Xp A set of 1D points which constitute the vertices of the CS-PCD.

Yp A set of 1D points which constitute the end points of the partition intervals.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number which serves as the centrality parameter in CS proximity
region; must be in (0, 1) (default c=.5).

support.int Support interval (a, b) with a < b. Uniformity of Xp points in this interval is
tested. Default is NULL.

end.int.cor A logical argument for end interval correction, default is FALSE, recommended
when both Xp and Yp have the same interval support.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater".

conf.level Level of the confidence interval, default is 0.95, for the arc density CS-PCD
whose vertices are the 1D data set Xp.

Value

A list with the elements

statistic Test statistic

p.value The p-value for the hypothesis test for the corresponding alternative.

conf.int Confidence interval for the arc density at the given confidence level conf.level
and depends on the type of alternative.

estimate Estimate of the parameter, i.e., arc density

null.value Hypothesized value for the parameter, i.e., the null arc density, which is usually
the mean arc density under uniform distribution.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater"

method Description of the hypothesis test

data.name Name of the data set

CSarc.dens.tri 85

Author(s)

Elvan Ceyhan

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

CSarc.dens.test and CSarc.dens.test.int

Examples

tau<-2
c<-.4
a<-0; b<-10; int=c(a,b)

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xf<-(int[2]-int[1])*.1

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

CSarc.dens.test1D(Xp,Yp,tau,c,int)
CSarc.dens.test1D(Xp,Yp,tau,c,int,alt="l")
CSarc.dens.test1D(Xp,Yp,tau,c,int,alt="g")

CSarc.dens.test1D(Xp,Yp,tau,c,int,end.int.cor = TRUE)

Yp2<-runif(ny,a,b)+11
CSarc.dens.test1D(Xp,Yp2,tau,c,int)

n<-10 #try also n<-20
Xp<-runif(n,a,b)
CSarc.dens.test1D(Xp,Yp,tau,c,int)

CSarc.dens.tri Arc density of Central Similarity Proximity Catch Digraphs (CS-
PCDs) - one triangle case

Description

Returns the arc density of CS-PCD whose vertex set is the given 2D numerical data set, Xp, (some
of its members are) in the triangle tri.

86 CSarc.dens.tri

CS proximity regions is defined with respect to tri with expansion parameter t > 0 and edge re-
gions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric
coordinates in the interior of the triangle tri; default is M = (1, 1, 1) i.e., the center of mass of
tri. The function also provides arc density standardized by the mean and asymptotic variance of
the arc density of CS-PCD for uniform data in the triangle tri only when M is the center of mass.
For the number of arcs, loops are not allowed.

tri.cor is a logical argument for triangle correction (default is TRUE), if TRUE, only the points inside
the triangle are considered (i.e., digraph induced by these vertices are considered) in computing the
arc density, otherwise all points are considered (for the number of vertices in the denominator of
arc density).

See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) for more on CS-PCDs.

Usage

CSarc.dens.tri(Xp, tri, t, M = c(1, 1, 1), tri.cor = FALSE)

Arguments

Xp A set of 2D points which constitute the vertices of the CS-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri; default is M =
(1, 1, 1) i.e., the center of mass of tri.

tri.cor A logical argument for computing the arc density for only the points inside the
triangle, tri (default is tri.cor=FALSE), i.e., if tri.cor=TRUE only the in-
duced digraph with the vertices inside tri are considered in the computation of
arc density.

Value

A list with the elements

arc.dens Arc density of CS-PCD whose vertices are the 2D numerical data set, Xp; CS
proximity regions are defined with respect to the triangle tri and M-edge regions

std.arc.dens Arc density standardized by the mean and asymptotic variance of the arc density
of CS-PCD for uniform data in the triangle tri.This will only be returned if M
is the center of mass.

Author(s)

Elvan Ceyhan

dimension 87

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

ASarc.dens.tri, PEarc.dens.tri, and num.arcsCStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

CSarc.dens.tri(Xp,Tr,t=.5,M)
CSarc.dens.tri(Xp,Tr,t=.5,M,tri.cor = FALSE)
#try also t=1 and t=1.5 above

End(Not run)

dimension The dimension of a vector or matrix or a data frame

Description

Returns the dimension (i.e., number of columns) of x, which is a matrix or a vector or a data frame.
This is different than the dim function in base R, in the sense that, dimension gives only the number
of columns of the argument x, while dim gives the number of rows and columns of x. dimension
also works for a scalar or a vector, while dim yields NULL for such arguments.

Usage

dimension(x)

88 Dist

Arguments

x A vector or a matrix or a data frame whose dimension is to be determined.

Value

Dimension (i.e., number of columns) of x

Author(s)

Elvan Ceyhan

See Also

is.point and dim from the base distribution of R

Examples

Not run:
dimension(3)
dim(3)

A<-c(1,2)
dimension(A)
dim(A)

B<-c(2,3)
dimension(rbind(A,B,A))
dimension(cbind(A,B,A))

M<-matrix(runif(20),ncol=5)
dimension(M)
dim(M)

dimension(c("a","b"))

End(Not run)

Dist The distance between two vectors, matrices, or data frames

Description

Returns the Euclidean distance between x and y which can be vectors or matrices or data frames of
any dimension (x and y should be of same dimension).

This function is different from the dist function in the stats package of the standard R distribution.
dist requires its argument to be a data matrix and dist computes and returns the distance matrix
computed by using the specified distance measure to compute the distances between the rows of a

Dist 89

data matrix (Becker et al. (1988)), while Dist needs two arguments to find the distances between.
For two data matrices A and B, dist(rbind(as.vector(A), as.vector(B))) and Dist(A,B)
yield the same result.

Usage

Dist(x, y)

Arguments

x, y Vectors, matrices or data frames (both should be of the same type).

Value

Euclidean distance between x and y

Author(s)

Elvan Ceyhan

References

Becker RA, Chambers JM, Wilks AR (1988). The New S Language. Wadsworth & Brooks/Cole.

See Also

dist from the base package stats

Examples

Not run:
B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Dist(B,C);
dist(rbind(B,C))

x<-runif(10)
y<-runif(10)
Dist(x,y)

xm<-matrix(x,ncol=2)
ym<-matrix(y,ncol=2)
Dist(xm,ym)
dist(rbind(as.vector(xm),as.vector(ym)))

Dist(xm,xm)

End(Not run)

90 dist.point2line

dist.point2line The distance from a point to a line defined by two points

Description

Returns the distance from a point p to the line joining points a and b in 2D space.

Usage

dist.point2line(p, a, b)

Arguments

p A 2D point, distance from p to the line passing through points a and b are to be
computed.

a, b 2D points that determine the straight line (i.e., through which the straight line
passes).

Value

A list with two elements

dis Distance from point p to the line passing through a and b

cl2p The closest point on the line passing through a and b to the point p

Author(s)

Elvan Ceyhan

See Also

dist.point2plane, dist.point2set, and Dist

Examples

Not run:
A<-c(1,2); B<-c(2,3); P<-c(3,1.5)

dpl<-dist.point2line(P,A,B);
dpl
C<-dpl$cl2p
pts<-rbind(A,B,C,P)

xr<-range(pts[,1])
xf<-(xr[2]-xr[1])*.25
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20, or 100
lnAB<-Line(A,B,x)
y<-lnAB$y

dist.point2plane 91

int<-lnAB$intercept #intercept
sl<-lnAB$slope #slope

xsq<-seq(min(A[1],B[1],P[1])-xf,max(A[1],B[1],P[1])+xf,l=5)
#try also l=10, 20, or 100
pline<-(-1/sl)*(xsq-P[1])+P[2]
#line passing thru P and perpendicular to AB

Xlim<-range(pts[,1],x)
Ylim<-range(pts[,2],y)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(rbind(P),asp=1,pch=1,xlab="x",ylab="y",
main="Illustration of the distance from P \n to the Line Crossing Points A and B",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(rbind(A,B),pch=1)
lines(x,y,lty=1,xlim=Xlim,ylim=Ylim)
int<-round(int,2); sl<-round(sl,2)
text(rbind((A+B)/2+xd*c(-.01,-.01)),ifelse(sl==0,paste("y=",int),
ifelse(sl==1,paste("y=x+",int),
ifelse(int==0,paste("y=",sl,"x"),paste("y=",sl,"x+",int)))))
text(rbind(A+xd*c(0,-.01),B+xd*c(.0,-.01),P+xd*c(.01,-.01)),c("A","B","P"))
lines(xsq,pline,lty=2)
segments(P[1],P[2], C[1], C[2], lty=1,col=2,lwd=2)
text(rbind(C+xd*c(-.01,-.01)),"C")
text(rbind((P+C)/2),col=2,paste("d=",round(dpl$dis,2)))

End(Not run)

dist.point2plane The distance from a point to a plane spanned by three 3D points

Description

Returns the distance from a point p to the plane passing through points a, b, and c in 3D space.

Usage

dist.point2plane(p, a, b, c)

Arguments

p A 3D point, distance from p to the plane passing through points a, b, and c are
to be computed.

a, b, c 3D points that determine the plane (i.e., through which the plane is passing).

92 dist.point2plane

Value

A list with two elements

dis Distance from point p to the plane spanned by 3D points a, b, and c

cl2pl The closest point on the plane spanned by 3D points a, b, and c to the point p

Author(s)

Elvan Ceyhan

See Also

dist.point2line, dist.point2set, and Dist

Examples

Not run:
P<-c(5,2,40)
P1<-c(1,2,3); P2<-c(3,9,12); P3<-c(1,1,3);

dis<-dist.point2plane(P,P1,P2,P3);
dis
Pr<-dis$proj #projection on the plane

xseq<-seq(0,10,l=5) #try also l=10, 20, or 100
yseq<-seq(0,10,l=5) #try also l=10, 20, or 100

pl.grid<-Plane(P1,P2,P3,xseq,yseq)$z

plot3D::persp3D(z = pl.grid, x = xseq, y = yseq, theta =225, phi = 30,
ticktype = "detailed",
expand = 0.7, facets = FALSE, scale = TRUE,
main="Point P and its Orthogonal Projection \n on the Plane Defined by P1, P2, P3")
#plane spanned by points P1, P2, P3
#add the vertices of the tetrahedron
plot3D::points3D(P[1],P[2],P[3], add=TRUE)
plot3D::points3D(Pr[1],Pr[2],Pr[3], add=TRUE)
plot3D::segments3D(P[1], P[2], P[3], Pr[1], Pr[2],Pr[3], add=TRUE,lwd=2)

plot3D::text3D(P[1]-.5,P[2],P[3]+1, c("P"),add=TRUE)
plot3D::text3D(Pr[1]-.5,Pr[2],Pr[3]+2, c("Pr"),add=TRUE)

persp(xseq,yseq,pl.grid, xlab="x",ylab="y",zlab="z",theta = -30,
phi = 30, expand = 0.5, col = "lightblue",

ltheta = 120, shade = 0.05, ticktype = "detailed")

End(Not run)

dist.point2set 93

dist.point2set Distance from a point to a set of finite cardinality

Description

Returns the Euclidean distance between a point p and set of points Yp and the closest point in set Yp
to p. Distance between a point and a set is by definition the distance from the point to the closest
point in the set. p should be of finite dimension and Yp should be of finite cardinality and p and
elements of Yp must have the same dimension.

Usage

dist.point2set(p, Yp)

Arguments

p A vector (i.e., a point in Rd).

Yp A set of d-dimensional points.

Value

A list with the elements

distance Distance from point p to set Yp

ind.cl.point Index of the closest point in set Yp to the point p

closest.point The closest point in set Yp to the point p

Author(s)

Elvan Ceyhan

See Also

dist.point2line and dist.point2plane

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
dist.point2set(c(1,2),Te)

X2<-cbind(runif(10),runif(10))
dist.point2set(c(1,2),X2)

x<-runif(1)
y<-as.matrix(runif(10))
dist.point2set(x,y)

94 dom.num.exact

#this works, because x is a 1D point, and y is treated as a set of 10 1D points
#but will give an error message if y<-runif(10) is used above

End(Not run)

dom.num.exact Exact domination number (i.e., domination number by the exact algo-
rithm)

Description

Returns the (exact) domination number based on the incidence matrix Inc.Mat of a graph or a
digraph and the indices (i.e., row numbers of Inc.Mat) for the corresponding (exact) minimum
dominating set. Here the row number in the incidence matrix corresponds to the index of the vertex
(i.e., index of the data point). The function works whether loops are allowed or not (i.e., whether
the first diagonal is all 1 or all 0). It takes a rather long time for large number of vertices (i.e., large
number of row numbers).

Usage

dom.num.exact(Inc.Mat)

Arguments

Inc.Mat A square matrix consisting of 0’s and 1’s which represents the incidence matrix
of a graph or digraph.

Value

A list with two elements

dom.num The cardinality of the (exact) minimum dominating set, i.e., (exact) domination
number of the graph or digraph whose incidence matrix Inc.Mat is given as
input.

ind.mds The vector of indices of the rows in the incidence matrix Inc.Mat for the (exact)
minimum dominating set. The row numbers in the incidence matrix correspond
to the indices of the vertices (i.e., indices of the data points).

Author(s)

Elvan Ceyhan

See Also

dom.num.greedy, PEdom.num1D, PEdom.num.tri, PEdom.num.nondeg, and Idom.numCSup.bnd.tri

dom.num.greedy 95

Examples

Not run:
n<-10
M<-matrix(sample(c(0,1),n^2,replace=TRUE),nrow=n)
diag(M)<-1

dom.num.greedy(M)
Idom.num.up.bnd(M,2)
dom.num.exact(M)

End(Not run)

dom.num.greedy Approximate domination number and approximate dominating set by
the greedy algorithm

Description

Returns the (approximate) domination number and the indices (i.e., row numbers) for the corre-
sponding (approximate) minimum dominating set based on the incidence matrix Inc.Mat of a graph
or a digraph by using the greedy algorithm (Chvatal (1979)). Here the row number in the incidence
matrix corresponds to the index of the vertex (i.e., index of the data point). The function works
whether loops are allowed or not (i.e., whether the first diagonal is all 1 or all 0). This function may
yield the actual domination number or overestimates it.

Usage

dom.num.greedy(Inc.Mat)

Arguments

Inc.Mat A square matrix consisting of 0’s and 1’s which represents the incidence matrix
of a graph or digraph.

Value

A list with two elements

dom.num The cardinality of the (approximate) minimum dominating set found by the
greedy algorithm. i.e., (approximate) domination number of the graph or di-
graph whose incidence matrix Inc.Mat is given as input.

ind.dom.set Indices of the rows in the incidence matrix Inc.Mat for the ((approximate) min-
imum dominating set). The row numbers in the incidence matrix correspond to
the indices of the vertices (i.e., indices of the data points).

Author(s)

Elvan Ceyhan

96 edge.reg.triCM

References

Chvatal V (1979). “A greedy heuristic for the set-covering problem.” Mathematics of Operations
Research, 4(3), 233 — 235.

Examples

n<-5
M<-matrix(sample(c(0,1),n^2,replace=TRUE),nrow=n)
diag(M)<-1

dom.num.greedy(M)

edge.reg.triCM The vertices of the CM -edge region in a triangle that contains the
point

Description

Returns the edge whose region contains point, p, in the triangle tri= T (A,B,C) with edge regions
based on center of mass CM = (A+B + C)/3.

This function is related to rel.edge.triCM, but unlike rel.edge.triCM the related edges are given
as vertices ABC for re = 3, as BCA for re = 1 and as CAB for re = 2 where edges are labeled as 3
for edge AB, 1 for edge BC, and 2 for edge AC. The vertices are given one vertex in each row in
the output, e.g., ABC is printed as rbind(A,B,C), where row 1 has the entries of vertex A, row 2
has the entries of vertex B, and row 3 has the entries of vertex C.

If the point, p, is not inside tri, then the function yields NA as output.

Edge region for BCA is the triangle T (B,C,CM), edge region CAB is T (A,C,CM), and edge
region ABC is T (A,B,CM).

See also (Ceyhan (2005, 2010)).

Usage

edge.reg.triCM(p, tri)

Arguments

p A 2D point for which CM -edge region it resides in is to be determined in the
triangle tri.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

The CM -edge region that contains point, p in the triangle tri. The related edges are given as
vertices ABC for re = 3, as BCA for re = 1 and as CAB for re = 2 where edges are labeled as 3 for
edge AB, 1 for edge BC, and 2 for edge AC.

edge.reg.triCM 97

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.edge.tri, rel.edge.triCM, rel.edge.basic.triCM, rel.edge.basic.tri, rel.edge.std.triCM,
and edge.reg.triCM

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

P<-c(.4,.2) #try also P<-as.numeric(runif.tri(1,Tr)$g)
edge.reg.triCM(P,Tr)

P<-c(1.8,.5)
edge.reg.triCM(P,Tr)

CM<-(A+B+C)/3
p1<-(A+B+CM)/3
p2<-(B+C+CM)/3
p3<-(A+C+CM)/3

Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-Tr; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

txt<-rbind(Tr,CM,p1,p2,p3)
xc<-txt[,1]+c(-.02,.02,.02,-.05,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,.02,0,0,0)

98 fr2edgesCMedge.reg.std.tri

txt.str<-c("A","B","C","CM","re=T(A,B,CM)","re=T(B,C,CM)","re=T(A,C,CM)")
text(xc,yc,txt.str)

End(Not run)

fr2edgesCMedge.reg.std.tri

The furthest points in a data set from edges in each CM -edge region
in the standard equilateral triangle

Description

An object of class "Extrema". Returns the furthest data points among the data set, Xp, in each CM -
edge region from the edge in the standard equilateral triangle Te = T (A = (0, 0), B = (1, 0), C =
(1/2,

√
3/2)).

ch.all.intri is for checking whether all data points are inside Te (default is FALSE).

See also (Ceyhan (2005)).

Usage

fr2edgesCMedge.reg.std.tri(Xp, ch.all.intri = FALSE)

Arguments

Xp A set of 2D points, some could be inside and some could be outside standard
equilateral triangle Te.

ch.all.intri A logical argument used for checking whether all data points are inside Te (de-
fault is FALSE).

Value

A list with the elements

txt1 Edge labels as AB = 3, BC = 1, and AC = 2 for Te (correspond to row
number in Extremum Points).

txt2 A short description of the distances as "Distances to Edges".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main" title for the plot of the extrema

ext The extrema points, here, furthest points from edges in each edge region.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is Te.

fr2edgesCMedge.reg.std.tri 99

cent The center point used for construction of edge regions.

ncent Name of the center, cent, it is center of mass "CM" for this function.

regions Edge regions inside the triangle, Te, provided as a list.

region.names Names of the edge regions as "er=1", "er=2", and "er=3".

region.centers Centers of mass of the edge regions inside Te.

dist2ref Distances from furthest points in each edge region to the corresponding edge.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

See Also

fr2vertsCCvert.reg.basic.tri, fr2vertsCCvert.reg, fr2vertsCCvert.reg.basic.tri, kfr2vertsCCvert.reg,
and cl2edges.std.tri

Examples

Not run:
n<-20
Xp<-runif.std.tri(n)$gen.points

Ext<-fr2edgesCMedge.reg.std.tri(Xp)
Ext
summary(Ext)
plot(Ext,asp=1)

ed.far<-Ext

Xp2<-rbind(Xp,c(.8,.8))
fr2edgesCMedge.reg.std.tri(Xp2)
fr2edgesCMedge.reg.std.tri(Xp2,ch.all.intri = FALSE)
#gives error if ch.all.intri = TRUE

A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)
CM<-(A+B+C)/3
p1<-(A+B)/2
p2<-(B+C)/2
p3<-(A+C)/2

Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]

100 fr2vertsCCvert.reg

yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",xlab="",ylab="",
main="Furthest Points in CM-Edge Regions \n of Std Equilateral Triangle from its Edges",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp,xlab="",ylab="")
points(ed.far$ext,pty=2,pch=4,col="red")

txt<-rbind(Te,CM,p1,p2,p3)
xc<-txt[,1]+c(-.03,.03,.03,-.06,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,.02,0,0,0)
txt.str<-c("A","B","C","CM","re=2","re=3","re=1")
text(xc,yc,txt.str)

End(Not run)

fr2vertsCCvert.reg The furthest points in a data set from vertices in each CC-vertex region
in a triangle

Description

An object of class "Extrema". Returns the furthest data points among the data set, Xp, in each
CC-vertex region from the vertex in the triangle, tri= T (A,B,C). Vertex region labels/numbers
correspond to the row number of the vertex in tri. ch.all.intri is for checking whether all data
points are inside tri (default is FALSE).

If some of the data points are not inside tri and ch.all.intri=TRUE, then the function yields an
error message. If some of the data points are not inside tri and ch.all.intri=FALSE, then the
function yields the closest points to edges among the data points inside tri (yields NA if there are
no data points inside tri).

See also (Ceyhan (2005, 2012)).

Usage

fr2vertsCCvert.reg(Xp, tri, ch.all.intri = FALSE)

Arguments

Xp A set of 2D points representing the set of data points.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

ch.all.intri A logical argument (default=FALSE) to check whether all data points are inside
the triangle tri. So, if it is TRUE, the function checks if all data points are inside
the closure of the triangle (i.e., interior and boundary combined) else it does not.

fr2vertsCCvert.reg 101

Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C = 3 (correspond to row number in
Extremum Points).

txt2 A short description of the distances as "Distances from furthest points to
...".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main" title for the plot of the extrema

ext The extrema points, here, furthest points from vertices in each CC-vertex region
in the triangle tri.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is the triangle tri for this function.

cent The center point used for construction of edge regions.

ncent Name of the center, cent, it is circumcenter "CC" for this function

regions CC-Vertex regions inside the triangle, tri, provided as a list

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"

region.centers Centers of mass of the vertex regions inside tri

dist2ref Distances from furthest points in each vertex region to the corresponding vertex

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

fr2vertsCCvert.reg.basic.tri, fr2edgesCMedge.reg.std.tri, fr2vertsCCvert.reg.basic.tri
and kfr2vertsCCvert.reg

102 fr2vertsCCvert.reg.basic.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

Ext<-fr2vertsCCvert.reg(Xp,Tr)
Ext
summary(Ext)
plot(Ext)

f2v<-Ext

CC<-circumcenter.tri(Tr) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,xlab="",asp=1,ylab="",pch=".",
main="Furthest Points in CC-Vertex Regions \n from the Vertices",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(rbind(f2v$ext),pch=4,col=2)

txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.06,.08,.05,.12,-.1,-.1,-.09)
yc<-txt[,2]+c(.02,-.02,.05,.0,.02,.06,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

Xp2<-rbind(Xp,c(.2,.4))
fr2vertsCCvert.reg(Xp2,Tr,ch.all.intri = FALSE)
#gives an error message if ch.all.intri = TRUE
#since not all points in the data set are in the triangle

End(Not run)

fr2vertsCCvert.reg.basic.tri 103

fr2vertsCCvert.reg.basic.tri

The furthest points from vertices in each CC-vertex region in a stan-
dard basic triangle

Description

An object of class "Extrema". Returns the furthest data points among the data set, Xp, in each CC-
vertex region from the corresponding vertex in the standard basic triangle Tb = T (A = (0, 0), B =
(1, 0), C = (c1, c2)).

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence, standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

ch.all.intri is for checking whether all data points are inside Tb (default is FALSE).

See also (Ceyhan (2005, 2012)).

An object of class "Extrema". Returns the k furthest data points among the data set, Xp, in each CC-
vertex region from the vertex in the standard basic triangle Tb = T (A = (0, 0), B = (1, 0), C =
(c1, c2)).

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence, standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

ch.all.intri is for checking whether all data points are inside Tb (default is FALSE). In the ex-
trema, ext, in the output, the first k entries are the k furthest points from vertex 1, second k entries
are k furthest points are from vertex 2, and last k entries are the k furthest points from vertex 3 If
data size does not allow, NA’s are inserted for some or all of the k furthest points for each vertex.

Usage

fr2vertsCCvert.reg.basic.tri(Xp, c1, c2, k, ch.all.intri = FALSE)

fr2vertsCCvert.reg.basic.tri(Xp, c1, c2, k, ch.all.intri = FALSE)

Arguments

Xp A set of 2D points representing the set of data points.

c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle.
adjacent to the shorter edges; c1 must be in [0, 1/2], c2 > 0 and (1−c1)

2+c22 ≤
1

k A positive integer. k furthest data points in each CC-vertex region are to be
found if exists, else NA are provided for (some of) the k furthest points.

ch.all.intri A logical argument for checking whether all data points are inside Tb (default is
FALSE).

104 fr2vertsCCvert.reg.basic.tri

Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C = 3 (correspond to row number in
Extremum Points).

txt2 A short description of the distances as "Distances from furthest points to
...".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main" title for the plot of the extrema

ext The extrema points, here, furthest points from vertices in each vertex region.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is Tb.

cent The center point used for construction of edge regions.

ncent Name of the center, cent, it is circumcenter "CC" for this function.

regions Vertex regions inside the triangle, Tb, provided as a list.

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"

region.centers Centers of mass of the vertex regions inside Tb.

dist2ref Distances from furthest points in each vertex region to the corresponding vertex.

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C = 3 (correspond to row number in
Extremum Points).

txt2 A shorter description of the distances as "Distances of k furthest points in
the vertex regions to Vertices".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main" title for the plot of the extrema

ext The extrema points, here, k furthest points from vertices in each vertex region.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is Tb.

cent The center point used for construction of edge regions.

ncent Name of the center, cent, it is circumcenter "CC" for this function.

regions Vertex regions inside the triangle, Tb, provided as a list.

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"

region.centers Centers of mass of the vertex regions inside Tb.

dist2ref Distances from k furthest points in each vertex region to the corresponding ver-
tex (each row representing a vertex).

fr2vertsCCvert.reg.basic.tri 105

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

fr2vertsCCvert.reg, fr2edgesCMedge.reg.std.tri, and kfr2vertsCCvert.reg

fr2vertsCCvert.reg.basic.tri, fr2vertsCCvert.reg, fr2edgesCMedge.reg.std.tri, and
kfr2vertsCCvert.reg

Examples

Not run:
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-20

set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g

Ext<-fr2vertsCCvert.reg.basic.tri(Xp,c1,c2)
Ext
summary(Ext)
plot(Ext)

f2v<-Ext

CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",asp=1,xlab="",ylab="",
main="Furthest Points in CC-Vertex Regions \n from the Vertices",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds

106 fr2vertsCCvert.reg.basic.tri

segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(rbind(f2v$ext),pch=4,col=2)

txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.03,0.02,.07,.06,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,.01,.02,.02,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

Not run:
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-20
k<-3

set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g

Ext<-fr2vertsCCvert.reg.basic.tri(Xp,c1,c2,k)
Ext
summary(Ext)
plot(Ext)

kf2v<-Ext

CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",asp=1,xlab="",ylab="",
main=paste(k," Furthest Points in CC-Vertex Regions \n from the Vertices",sep=""),
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(kf2v$ext,pch=4,col=2)

txt<-rbind(Tb,CC,Ds)
xc<-txt[,1]+c(-.03,.03,.02,.07,.06,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,-.02,.02,.03,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

funsAB2CMTe 107

End(Not run)

funsAB2CMTe The lines joining two vertices to the center of mass in standard equi-
lateral triangle

Description

Two functions, lineA2CMinTe and lineB2CMinTe of class "TriLines". Returns the equation,
slope, intercept, and y-coordinates of the lines joining A and CM and also B and CM .

lineA2CMinTe is the line joining A to the center of mass, CM , and lineB2CMinTe is the line
joining B to the center of mass, CM , in the standard equilateral triangle Te = (A,B,C) with
A = (0, 0), B = (1, 0), C = (1/2,

√
3/2); x-coordinates are provided in vector x.

Usage

lineA2CMinTe(x)

lineB2CMinTe(x)

Arguments

x A single scalar or a vector of scalars which is the argument of the functions
lineA2CMinTe and lineB2CMinTe.

Value

A list with the elements

txt1 Longer description of the line.

txt2 Shorter description of the line (to be inserted over the line in the plot).

mtitle The "main" title for the plot of the line.

cent The center chosen inside the standard equilateral triangle.

cent.name The name of the center inside the standard equilateral triangle. It is "CM" for
these two functions.

tri The triangle (it is the standard equilateral triangle for this function).

x The input vector, can be a scalar or a vector of scalars, which constitute the
x-coordinates of the point(s) of interest on the line.

y The output vector, will be a scalar if x is a scalar or a vector of scalars if x is a
vector of scalar, constitutes the y-coordinates of the point(s) of interest on the
line.

slope Slope of the line.

intercept Intercept of the line.

equation Equation of the line.

108 funsAB2CMTe

Author(s)

Elvan Ceyhan

See Also

lineA2MinTe, lineB2MinTe, and lineC2MinTe

Examples

Not run:
#Examples for lineA2CMinTe
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
xfence<-abs(A[1]-B[1])*.25
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .1) #try also by = .01

lnACM<-lineA2CMinTe(x)
lnACM
summary(lnACM)
plot(lnACM)

CM<-(A+B+C)/3;
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Te,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
L<-Te; R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

txt<-rbind(Te,CM,D1,D2,D3,c(.25,lineA2CMinTe(.25)$y),c(.75,lineB2CMinTe(.75)$y))
xc<-txt[,1]+c(-.02,.02,.02,.05,.05,-.03,.0,0,0)
yc<-txt[,2]+c(.02,.02,.02,.02,0,.02,-.04,0,0)
txt.str<-c("A","B","C","CM","D1","D2","D3","lineA2CMinTe(x)","lineB2CMinTe(x)")
text(xc,yc,txt.str)

lineA2CMinTe(.25)$y

End(Not run)

Not run:
#Examples for lineB2CMinTe
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
xfence<-abs(A[1]-B[1])*.25
#how far to go at the lower and upper ends in the x-coordinate

funsAB2MTe 109

x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .1) #try also by = .01

lnBCM<-lineB2CMinTe(x)
lnBCM
summary(lnBCM)
plot(lnBCM,xlab=" x",ylab="y")

lineB2CMinTe(.25)$y

End(Not run)

funsAB2MTe The lines joining the three vertices of the standard equilateral triangle
to a center, M, of it

Description

Three functions, lineA2MinTe, lineB2MinTe and lineC2MinTe of class "TriLines". Returns the
equation, slope, intercept, and y-coordinates of the lines joining A and M, B and M, and also
C and M.

lineA2MinTe is the line joining A to the center, M, lineB2MinTe is the line joining B to M, and
lineC2MinTe is the line joining C to M, in the standard equilateral triangle Te = (A,B,C) with
A = (0, 0), B = (1, 0), C = (1/2,

√
3/2); x-coordinates are provided in vector x

Usage

lineA2MinTe(x, M)

lineB2MinTe(x, M)

lineC2MinTe(x, M)

Arguments

x A single scalar or a vector of scalars.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle.

Value

A list with the elements

txt1 Longer description of the line.

txt2 Shorter description of the line (to be inserted over the line in the plot).

mtitle The "main" title for the plot of the line.

cent The center chosen inside the standard equilateral triangle.

110 funsAB2MTe

cent.name The name of the center inside the standard equilateral triangle.

tri The triangle (it is the standard equilateral triangle for this function).

x The input vector, can be a scalar or a vector of scalars, which constitute the
x-coordinates of the point(s) of interest on the line.

y The output vector, will be a scalar if x is a scalar or a vector of scalars if x is a
vector of scalar, constitutes the y-coordinates of the point(s) of interest on the
line.

slope Slope of the line.

intercept Intercept of the line.

equation Equation of the line.

See Also

lineA2CMinTe and lineB2CMinTe

Examples

Not run:
#Examples for lineA2MinTe
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)

M<-c(.65,.2) #try also M<-c(1,1,1)

xfence<-abs(A[1]-B[1])*.25
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .1) #try also by = .01

lnAM<-lineA2MinTe(x,M)
lnAM
summary(lnAM)
plot(lnAM)

Ds<-prj.cent2edges(Te,M)
#finds the projections from a point M=(m1,m2) to the edges on the
#extension of the lines joining M to the vertices in the triangle Te

Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Te,pch=".",xlab="",ylab="",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
L<-Te; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
L<-Ds; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 3,col=2)

funsCartBary 111

txt<-rbind(Te,M,Ds,c(.25,lineA2MinTe(.25,M)$y),c(.4,lineB2MinTe(.4,M)$y),
c(.60,lineC2MinTe(.60,M)$y))
xc<-txt[,1]+c(-.02,.02,.02,.02,.04,-.03,.0,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,.05,.02,.03,-.03,0,0,0)
txt.str<-c("A","B","C","M","D1","D2","D3","lineA2MinTe(x)","lineB2MinTe(x)","lineC2MinTe(x)")
text(xc,yc,txt.str)

lineA2MinTe(.25,M)

End(Not run)

Not run:
#Examples for lineB2MinTe
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)

M<-c(.65,.2) #try also M<-c(1,1,1)

xfence<-abs(A[1]-B[1])*.25
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .5) #try also by = .1

lnBM<-lineB2MinTe(x,M)
lnBM
summary(lnBM)
plot(lnBM)

End(Not run)

Not run:
#Examples for lineC2MinTe
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)

M<-c(.65,.2) #try also M<-c(1,1,1)

xfence<-abs(A[1]-B[1])*.25
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by = .5)
#try also by = .1

lnCM<-lineC2MinTe(x,M)
lnCM
summary(lnCM)
plot(lnCM)

End(Not run)

funsCartBary Converts of a point in Cartesian coordinates to Barycentric coordi-
nates and vice versa

112 funsCartBary

Description

Two functions: cart2bary and bary2cart.

cart2bary converts Cartesian coordinates of a given point P= (x, y) to barycentric coordinates
(in the normalized form) with respect to the triangle tri= (v1, v2, v3) with vertex labeling done
row-wise in tri (i.e., row i corresponds to vertex vi for i = 1, 2, 3).

bary2cart converts barycentric coordinates of the point P= (t1, t2, t3) (not necessarily normalized)
to Cartesian coordinates according to the coordinates of the triangle, tri. For information on
barycentric coordinates, see (Weisstein (2019)).

Usage

cart2bary(P, tri)

bary2cart(P, tri)

Arguments

P A 2D point for cart2bary, and a vector of three numeric entries for bary2cart.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

cart2bary returns the barycentric coordinates of a given point P= (x, y) and bary2cart returns
the Cartesian coordinates of the point P= (t1, t2, t3) (not necessarily normalized).

Author(s)

Elvan Ceyhan

References

Weisstein EW (2019). “Barycentric Coordinates.” From MathWorld — A Wolfram Web Resource,
http://mathworld.wolfram.com/BarycentricCoordinates.html.

Examples

Not run:
#Examples for cart2bary
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tr<-rbind(A,B,C)

cart2bary(A,Tr)
cart2bary(c(.3,.2),Tr)

End(Not run)

Not run:
#Examples for bary2cart

http://mathworld.wolfram.com/BarycentricCoordinates.html

funsCSEdgeRegs 113

c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tr<-rbind(A,B,C)

bary2cart(c(.3,.2,.5),Tr)
bary2cart(c(6,2,4),Tr)

End(Not run)

funsCSEdgeRegs Each function is for the presence of an arc from a point in one of
the edge regions to another for Central Similarity Proximity Catch
Digraphs (CS-PCDs) - standard equilateral triangle case

Description

Three indicator functions: IarcCSstd.triRAB, IarcCSstd.triRBC and IarcCSstd.triRAC.

The function IarcCSstd.triRAB returns I(p2 is in NCS(p1, t) for p1 in RAB (edge region for edge
AB, i.e., edge 3) in the standard equilateral triangle Te = T (A,B,C) = T ((0, 0), (1, 0), (1/2,

√
3/2));

IarcCSstd.triRBC returns I(p2 is in NCS(p1, t) for p1 in RBC (edge region for edge BC, i.e.,
edge 1) in Te; and

IarcCSstd.triRAC returns I(p2 is in NCS(p1, t) for p1 in RAC (edge region for edge AC, i.e.,
edge 2) in Te. That is, each function returns 1 if p2 is in NCS(p1, t), returns 0 otherwise.

CS proximity region is defined with respect to Te whose vertices are also labeled as Te = T (v =
1, v = 2, v = 3) with expansion parameter t > 0 and edge regions are based on the center M =
(m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of Te

If p1 and p2 are distinct and p1 is outside the corresponding edge region and p2 is outside Te, it
returns 0, but if they are identical, then it returns 1 regardless of their location (i.e., it allows loops).

See also (Ceyhan (2005, 2010)).

Usage

IarcCSstd.triRAB(p1, p2, t, M)

IarcCSstd.triRBC(p1, p2, t, M)

IarcCSstd.triRAC(p1, p2, t, M)

Arguments

p1 A 2D point whose CS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.

t A positive real number which serves as the expansion parameter in CS proximity
region.

114 funsCSEdgeRegs

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle Te.

Value

Each function returns I(p2 is in NCS(p1, t)) for p1, that is, returns 1 if p2 is in NCS(p1, t), returns
0 otherwise

Author(s)

Elvan Ceyhan

See Also

IarcCSt1.std.triRAB, IarcCSt1.std.triRBC and IarcCSt1.std.triRAC

Examples

Not run:
#Examples for IarcCSstd.triRAB
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
T3<-rbind(A,B,CM);

set.seed(1)
Xp<-runif.std.tri(3)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

t<-1

IarcCSstd.triRAB(Xp[1,],Xp[2,],t,M)
IarcCSstd.triRAB(c(.2,.5),Xp[2,],t,M)

End(Not run)

Not run:
#Examples for IarcCSstd.triRBC
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
T1<-rbind(B,C,CM);

set.seed(1)
Xp<-runif.std.tri(3)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

t<-1

IarcCSstd.triRBC(Xp[1,],Xp[2,],t,M)
IarcCSstd.triRBC(c(.2,.5),Xp[2,],t,M)

funsCSGamTe 115

End(Not run)

Not run:
#Examples for IarcCSstd.triRAC
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
T2<-rbind(A,C,CM);

set.seed(1)
Xp<-runif.std.tri(3)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

t<-1

IarcCSstd.triRAC(Xp[1,],Xp[2,],t,M)
IarcCSstd.triRAC(c(.2,.5),Xp[2,],t,M)

End(Not run)

funsCSGamTe The function gammakCSstd.tri is for k (k = 2, 3, 4, 5) points con-
stituting a dominating set for Central Similarity Proximity Catch Di-
graphs (CS-PCDs) - standard equilateral triangle case

Description

Four indicator functions: Idom.num2CSstd.tri, Idom.num3CSstd.tri, Idom.num4CSstd.tri,
Idom.num5CSstd.tri and Idom.num6CSstd.tri.

The function gammakCSstd.tri returns I({p1,...,pk} is a dominating set of the CS-PCD) where
vertices of CS-PCD are the 2D data set Xp, that is, returns 1 if {p1,...,pk} is a dominating set of
CS-PCD, returns 0 otherwise for k = 2, 3, 4, 5, 6.

CS proximity region is constructed with respect to Te = T (A,B,C) = T ((0, 0), (1, 0), (1/2,
√
3/2))

with expansion parameter t > 0 and edge regions are based on center of mass CM = (1/2,
√
3/6).

ch.data.pnts is for checking whether points p1,...,pk are data points in Xp or not (default is FALSE),
so by default this function checks whether the points p1,...,pk would be a dominating set if they
actually were in the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num2CSstd.tri(p1, p2, Xp, t, ch.data.pnts = FALSE)

Idom.num3CSstd.tri(p1, p2, p3, Xp, t, ch.data.pnts = FALSE)

Idom.num4CSstd.tri(p1, p2, p3, p4, Xp, t, ch.data.pnts = FALSE)

116 funsCSGamTe

Idom.num5CSstd.tri(p1, p2, p3, p4, p5, Xp, t, ch.data.pnts = FALSE)

Idom.num6CSstd.tri(p1, p2, p3, p4, p5, p6, Xp, t, ch.data.pnts = FALSE)

Arguments

p1, p2, p3, p4, p5, p6
The points {p1, . . . , pk} are k 2D points (for k = 2, 3, 4, 5, 6) to be tested for
constituting a dominating set of the CS-PCD.

Xp A set of 2D points which constitutes the vertices of the CS-PCD.

t A positive real number which serves as the expansion parameter in CS proximity
region.

ch.data.pnts A logical argument for checking whether points {p1, . . . , pk} are data points in
Xp or not (default is FALSE).

Value

The function gammakCSstd.tri returns {p1,...,pk} is a dominating set of the CS-PCD) where ver-
tices of the CS-PCD are the 2D data set Xp), that is, returns 1 if {p1,...,pk} is a dominating set of
CS-PCD, returns 0 otherwise.

Author(s)

Elvan Ceyhan

See Also

Idom.num1CSstd.tri, Idom.num2PEtri and Idom.num2PEtetra

Examples

Not run:
set.seed(123)
#Examples for Idom.num2CSstd.tri
t<-1.5
n<-10 #try also 10, 20 (it may take longer for larger n)

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num2CSstd.tri(Xp[1,],Xp[2,],Xp,t)
Idom.num2CSstd.tri(c(.2,.2),Xp[2,],Xp,t)

ind.gam2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
{if (Idom.num2CSstd.tri(Xp[i,],Xp[j,],Xp,t)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}

funsCSGamTe 117

ind.gam2

End(Not run)

Not run:
#Examples for Idom.num3CSstd.tri
t<-1.5
n<-10 #try also 10, 20 (it may take longer for larger n)

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num3CSstd.tri(Xp[1,],Xp[2,],Xp[3,],Xp,t)

ind.gam3<-vector()
for (i in 1:(n-2))
for (j in (i+1):(n-1))
for (k in (j+1):n)
{if (Idom.num3CSstd.tri(Xp[i,],Xp[j,],Xp[k,],Xp,t)==1)
ind.gam3<-rbind(ind.gam3,c(i,j,k))}

ind.gam3

End(Not run)

Not run:
#Examples for Idom.num4CSstd.tri
t<-1.5
n<-10 #try also 10, 20 (it may take longer for larger n)

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num4CSstd.tri(Xp[1,],Xp[2,],Xp[3,],Xp[4,],Xp,t)

ind.gam4<-vector()
for (i in 1:(n-3))
for (j in (i+1):(n-2))
for (k in (j+1):(n-1))

for (l in (k+1):n)
{if (Idom.num4CSstd.tri(Xp[i,],Xp[j,],Xp[k,],Xp[l,],Xp,t)==1)
ind.gam4<-rbind(ind.gam4,c(i,j,k,l))}

ind.gam4

Idom.num4CSstd.tri(c(.2,.2),Xp[2,],Xp[3,],Xp[4,],Xp,t,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp

End(Not run)

Not run:
#Examples for Idom.num5CSstd.tri
t<-1.5

118 funsCSGamTe

n<-10 #try also 10, 20 (it may take longer for larger n)

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num5CSstd.tri(Xp[1,],Xp[2,],Xp[3,],Xp[4,],Xp[5,],Xp,t)

ind.gam5<-vector()
for (i1 in 1:(n-4))
for (i2 in (i1+1):(n-3))
for (i3 in (i2+1):(n-2))

for (i4 in (i3+1):(n-1))
for (i5 in (i4+1):n)
{if (Idom.num5CSstd.tri(Xp[i1,],Xp[i2,],Xp[i3,],Xp[i4,],Xp[i5,],Xp,t)==1)
ind.gam5<-rbind(ind.gam5,c(i1,i2,i3,i4,i5))}

ind.gam5

Idom.num5CSstd.tri(c(.2,.2),Xp[2,],Xp[3,],Xp[4,],Xp[5,],Xp,t,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp

End(Not run)

Not run:
#Examples for Idom.num6CSstd.tri
t<-1.5
n<-10 #try also 10, 20 (it may take longer for larger n)

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num6CSstd.tri(Xp[1,],Xp[2,],Xp[3,],Xp[4,],Xp[5,],Xp[6,],Xp,t)

ind.gam6<-vector()
for (i1 in 1:(n-5))
for (i2 in (i1+1):(n-4))
for (i3 in (i2+1):(n-3))

for (i4 in (i3+1):(n-2))
for (i5 in (i4+1):(n-1))

for (i6 in (i5+1):n)
{if (Idom.num6CSstd.tri(Xp[i1,],Xp[i2,],Xp[i3,],Xp[i4,],Xp[i5,],Xp[i6,],Xp,t)==1)

ind.gam6<-rbind(ind.gam6,c(i1,i2,i3,i4,i5,i6))}

ind.gam6

Idom.num6CSstd.tri(c(.2,.2),Xp[2,],Xp[3,],Xp[4,],Xp[5,],Xp[6,],Xp,t,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp

End(Not run)

funsCSt1EdgeRegs 119

funsCSt1EdgeRegs Each function is for the presence of an arc from a point in one of
the edge regions to another for Central Similarity Proximity Catch
Digraphs (CS-PCDs) - standard equilateral triangle case with t = 1

Description

Three indicator functions: IarcCSt1.std.triRAB, IarcCSt1.std.triRBC and IarcCSt1.std.triRAC.

The function IarcCSt1.std.triRAB returns I(p2 is in NCS(p1, t = 1) for p1 in RAB (edge region
for edge AB, i.e., edge 3) in the standard equilateral triangle Te = T (A,B,C) = T ((0, 0), (1, 0), (1/2,

√
3/2));

IarcCSt1.std.triRBC returns I(p2 is in NCS(p1, t = 1) for p1 in RBC (edge region for edge
BC, i.e., edge 1) in Te; and

IarcCSt1.std.triRAC returns I(p2 is in NCS(p1, t = 1) for p1 in RAC (edge region for edge
AC, i.e., edge 2) in Te.

That is, each function returns 1 if p2 is in NCS(p1, t = 1), returns 0 otherwise, where NCS(x, t) is
the CS proximity region for point x with expansion parameter t = 1.

Usage

IarcCSt1.std.triRAB(p1, p2)

IarcCSt1.std.triRBC(p1, p2)

IarcCSt1.std.triRAC(p1, p2)

Arguments

p1 A 2D point whose CS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.

Value

Each function returns I(p2 is in NCS(p1, t = 1)) for p1, that is, returns 1 if p2 is in NCS(p1, t = 1),
returns 0 otherwise

Author(s)

Elvan Ceyhan

See Also

IarcCSstd.triRAB, IarcCSstd.triRBC and IarcCSstd.triRAC

120 funsIndDelTri

Examples

Not run:
#Examples for IarcCSt1.std.triRAB
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
T3<-rbind(A,B,CM);

set.seed(1)
Xp<-runif.std.tri(10)$gen.points

IarcCSt1.std.triRAB(Xp[1,],Xp[2,])

IarcCSt1.std.triRAB(c(.2,.5),Xp[2,])

End(Not run)

Not run:
#Examples for IarcCSt1.std.triRBC
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
T1<-rbind(B,C,CM);

set.seed(1)
Xp<-runif.std.tri(3)$gen.points

IarcCSt1.std.triRBC(Xp[1,],Xp[2,])

IarcCSt1.std.triRBC(c(.2,.5),Xp[2,])

End(Not run)

Not run:
#Examples for IarcCSt1.std.triRAC
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
T2<-rbind(A,C,CM);

set.seed(1)
Xp<-runif.std.tri(3)$gen.points

IarcCSt1.std.triRAC(Xp[1,],Xp[2,])
IarcCSt1.std.triRAC(c(1,2),Xp[2,])

End(Not run)

funsIndDelTri Functions provide the indices of the Delaunay triangles where the
points reside

funsIndDelTri 121

Description

Two functions: index.delaunay.tri and indices.delaunay.tri.

index.delaunay.tri finds the index of the Delaunay triangle in which the given point, p, resides.

indices.delaunay.tri finds the indices of triangles for all the points in data set, Xp, as a vector.

Delaunay triangulation is based on Yp and DTmesh are the Delaunay triangles with default NULL.
The function returns NA for a point not inside the convex hull of Yp. Number of Yp points (i.e.,
size of Yp) should be at least three and the points should be in general position so that Delaunay
triangulation is (uniquely) defined.

If the number of Yp points is 3, then there is only one Delaunay triangle and the indices of all the
points inside this triangle are all 1.

See (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and
the corresponding algorithm.

Usage

index.delaunay.tri(p, Yp, DTmesh = NULL)

indices.delaunay.tri(Xp, Yp, DTmesh = NULL)

Arguments

p A 2D point; the index of the Delaunay triangle in which p resides is to be deter-
mined. It is an argument for index.delaunay.tri.

Yp A set of 2D points from which Delaunay triangulation is constructed.

DTmesh Delaunay triangles based on Yp, default is NULL, which is computed via tri.mesh
function in interp package. triangles function yields a triangulation data
structure from the triangulation object created by tri.mesh.

Xp A set of 2D points representing the set of data points for which the indices of
the Delaunay triangles they reside is to be determined. It is an argument for
indices.delaunay.tri.

Value

index.delaunay.tri returns the index of the Delaunay triangle in which the given point, p, re-
sides and indices.delaunay.tri returns the vector of indices of the Delaunay triangles in which
points in the data set, Xp, reside.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

122 funsIndDelTri

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

Examples

Not run:
#Examples for index.delaunay.tri
nx<-20 #number of X points (target)
ny<-5 #number of Y points (nontarget)
set.seed(1)
Yp<-cbind(runif(ny),runif(ny))

Xp<-runif.multi.tri(nx,Yp)$g #data under CSR in the convex hull of Ypoints
#try also Xp<-cbind(runif(nx),runif(nx))

index.delaunay.tri(Xp[10,],Yp)

#or use
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
#Delaunay triangulation
TRY<-interp::triangles(DTY)[,1:3];
index.delaunay.tri(Xp[10,],Yp,DTY)

ind.DT<-vector()
for (i in 1:nx)
ind.DT<-c(ind.DT,index.delaunay.tri(Xp[i,],Yp))

ind.DT

Xlim<-range(Yp[,1],Xp[,1])
Ylim<-range(Yp[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
#Delaunay triangulation based on Y points

#plot of the data in the convex hull of Y points together with the Delaunay triangulation
plot(Xp,main=" ", xlab=" ", ylab=" ",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),type="n")
interp::plot.triSht(DTY, add=TRUE, do.points = TRUE,pch=16,col="blue")
points(Xp,pch=".",cex=3)
text(Xp,labels = factor(ind.DT))

End(Not run)

Not run:
#Examples for indices.delaunay.tri
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)

funsMuVarCS1D 123

Yp<-cbind(runif(ny),runif(ny))
Xp<-runif.multi.tri(nx,Yp)$g #data under CSR in the convex hull of Ypoints
#try also Xp<-cbind(runif(nx),runif(nx))

tr.ind<-indices.delaunay.tri(Xp,Yp) #indices of the Delaunay triangles
tr.ind

#or use
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
#Delaunay triangulation based on Y points
tr.ind<-indices.delaunay.tri(Xp,Yp,DTY) #indices of the Delaunay triangles
tr.ind

Xlim<-range(Yp[,1],Xp[,1])
Ylim<-range(Yp[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

#plot of the data in the convex hull of Y points together with the Delaunay triangulation

par(pty = "s")
plot(Xp,main=" ", xlab=" ", ylab=" ",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),pch=".")
interp::plot.triSht(DTY, add=TRUE, do.points = TRUE,pch=16,col="blue")
text(Xp,labels = factor(tr.ind))

End(Not run)

funsMuVarCS1D Returning the mean and (asymptotic) variance of arc density of Cen-
tral Similarity Proximity Catch Digraph (CS-PCD) for 1D data - mid-
dle interval case

Description

Two functions: muCS1D and asyvarCS1D.

muCS1D returns the mean of the (arc) density of CS-PCD and asyvarCS1D returns the (asymptotic)
variance of the arc density of CS-PCD for a given centrality parameter c ∈ (0, 1) and an expansion
parameter t > 0 and 1D uniform data in a finite interval (a, b), i.e., data from U(a, b) distribution.

See also (Ceyhan (2016)).

Usage

muCS1D(t, c)

asyvarCS1D(t, c)

124 funsMuVarCS1D

Arguments

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b).
For the interval, int= (a, b), the parameterized center is Mc = a+ c(b− a).

Value

muCS1D returns the mean and asyvarCS1D returns the asymptotic variance of the arc density of
CS-PCD for uniform data in an interval

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

muPE1D and asyvarPE1D

Examples

#Examples for muCS1D
muCS1D(1.2,.4)
muCS1D(1.2,.6)

tseq<-seq(0.01,5,by=.05)
cseq<-seq(0.01,.99,by=.05)

ltseq<-length(tseq)
lcseq<-length(cseq)

mu.grid<-matrix(0,nrow=ltseq,ncol=lcseq)
for (i in 1:ltseq)

for (j in 1:lcseq)
{
mu.grid[i,j]<-muCS1D(tseq[i],cseq[j])

}

persp(tseq,cseq,mu.grid, xlab="t", ylab="c", zlab="mu(t,c)",theta = -30,
phi = 30, expand = 0.5, col = "lightblue", ltheta = 120,
shade = 0.05, ticktype = "detailed")

#Examples for asyvarCS1D
asyvarCS1D(1.2,.8)

funsMuVarCS2D 125

tseq<-seq(0.01,5,by=.05)
cseq<-seq(0.01,.99,by=.05)

ltseq<-length(tseq)
lcseq<-length(cseq)

var.grid<-matrix(0,nrow=ltseq,ncol=lcseq)
for (i in 1:ltseq)

for (j in 1:lcseq)
{
var.grid[i,j]<-asyvarCS1D(tseq[i],cseq[j])

}

persp(tseq,cseq,var.grid, xlab="t", ylab="c", zlab="var(t,c)", theta = -30,
phi = 30, expand = 0.5, col = "lightblue", ltheta = 120,
shade = 0.05, ticktype = "detailed")

funsMuVarCS2D Returns the mean and (asymptotic) variance of arc density of Central
Similarity Proximity Catch Digraph (CS-PCD) for 2D uniform data in
one triangle

Description

Two functions: muCS2D and asyvarCS2D.

muCS2D returns the mean of the (arc) density of CS-PCD and asyvarCS2D returns the asymptotic
variance of the arc density of CS-PCD with expansion parameter t > 0 for 2D uniform data in a
triangle.

CS proximity regions are defined with respect to the triangle and vertex regions are based on center
of mass, CM of the triangle.

See also (Ceyhan (2005); Ceyhan et al. (2007)).

Usage

muCS2D(t)

asyvarCS2D(t)

Arguments

t A positive real number which serves as the expansion parameter in CS proximity
region.

126 funsMuVarCS2D

Value

muCS2D returns the mean and asyvarCS2D returns the (asymptotic) variance of the arc density of
CS-PCD for uniform data in any triangle

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

muPE2D and asyvarPE2D

Examples

Not run:
#Examples for muCS2D
muCS2D(.5)

tseq<-seq(0.01,5,by=.1)
ltseq<-length(tseq)

mu<-vector()
for (i in 1:ltseq)
{

mu<-c(mu,muCS2D(tseq[i]))
}

plot(tseq, mu,type="l",xlab="t",ylab=expression(mu(t)),lty=1,xlim=range(tseq))

End(Not run)

Not run:
#Examples for asyvarCS2D
asyvarCS2D(.5)

tseq<-seq(0.01,10,by=.1)
ltseq<-length(tseq)

asyvar<-vector()
for (i in 1:ltseq)
{

asyvar<-c(asyvar,asyvarCS2D(tseq[i]))

funsMuVarCSend.int 127

}

par(mar=c(5,5,4,2))
plot(tseq, asyvar,type="l",xlab="t",ylab=expression(paste(sigma^2,"(t)")),lty=1,xlim=range(tseq))

End(Not run)

funsMuVarCSend.int Returns the mean and (asymptotic) variance of arc density of Central
Similarity Proximity Catch Digraph (CS-PCD) for 1D data - end in-
terval case

Description

Two functions: muCSend.int and asyvarCSend.int.

muCSend.int returns the mean of the arc density of CS-PCD and asyvarCSend.int returns the
asymptotic variance of the arc density of CS-PCD for a given expansion parameter t > 0 for 1D
uniform data in the left and right end intervals for the interval (a, b).

See also (Ceyhan (2016)).

Usage

muCSend.int(t)

asyvarCSend.int(t)

Arguments

t A positive real number which serves as the expansion parameter in CS proximity
region.

Details

funsMuVarCSend.int

Value

muCSend.int returns the mean and asyvarCSend.int returns the asymptotic variance of the arc
density of CS-PCD for uniform data in end intervals

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

128 funsMuVarPE1D

See Also

muPEend.int and asyvarPEend.int

Examples

#Examples for muCSend.int
muCSend.int(1.2)

tseq<-seq(0.01,5,by=.05)
ltseq<-length(tseq)

mu.end<-vector()
for (i in 1:ltseq)
{

mu.end<-c(mu.end,muCSend.int(tseq[i]))
}

oldpar <- par(no.readonly = TRUE)
par(mar = c(5,4,4,2) + 0.1)
plot(tseq, mu.end,type="l",
ylab=expression(paste(mu,"(t)")),xlab="t",lty=1,xlim=range(tseq),ylim=c(0,1))
par(oldpar)

#Examples for asyvarCSend.int
asyvarCSend.int(1.2)

tseq<-seq(.01,5,by=.05)
ltseq<-length(tseq)

var.end<-vector()
for (i in 1:ltseq)
{

var.end<-c(var.end,asyvarCSend.int(tseq[i]))
}

oldpar <- par(no.readonly = TRUE)
par(mar=c(5,5,4,2))
plot(tseq, var.end,type="l",xlab="t",ylab=expression(paste(sigma^2,"(t)")),lty=1,xlim=range(tseq))
par(oldpar)

funsMuVarPE1D Returns the mean and (asymptotic) variance of arc density of Propor-
tional Edge Proximity Catch Digraph (PE-PCD) for 1D data - middle
interval case

Description

The functions muPE1D and asyvarPE1D and their auxiliary functions.

funsMuVarPE1D 129

muPE1D returns the mean of the (arc) density of PE-PCD and asyvarPE1D returns the (asymptotic)
variance of the arc density of PE-PCD for a given centrality parameter c ∈ (0, 1) and an expan-
sion parameter r ≥ 1 and for 1D uniform data in a finite interval (a, b), i.e., data from U(a, b)
distribution.

muPE1D uses auxiliary (internal) function mu1PE1D which yields mean (i.e., expected value) of the
arc density of PE-PCD for a given c ∈ (0, 1/2) and r ≥ 1.

asyvarPE1D uses auxiliary (internal) functions fvar1 which yields asymptotic variance of the arc
density of PE-PCD for c ∈ (1/4, 1/2) and r ≥ 1; and fvar2 which yields asymptotic variance of
the arc density of PE-PCD for c ∈ (0, 1/4) and r ≥ 1.

See also (Ceyhan (2012)).

Usage

mu1PE1D(r, c)

muPE1D(r, c)

fvar1(r, c)

fvar2(r, c)

asyvarPE1D(r, c)

Arguments

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b).
For the interval, (a, b), the parameterized center is Mc = a+ c(b− a).

Value

muPE1D returns the mean and asyvarPE1D returns the asymptotic variance of the arc density of
PE-PCD for U(a, b) data

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

muCS1D and asyvarCS1D

130 funsMuVarPE2D

Examples

Not run:
#Examples for muPE1D
muPE1D(1.2,.4)
muPE1D(1.2,.6)

rseq<-seq(1.01,5,by=.1)
cseq<-seq(0.01,.99,by=.1)

lrseq<-length(rseq)
lcseq<-length(cseq)

mu.grid<-matrix(0,nrow=lrseq,ncol=lcseq)
for (i in 1:lrseq)

for (j in 1:lcseq)
{
mu.grid[i,j]<-muPE1D(rseq[i],cseq[j])

}

persp(rseq,cseq,mu.grid, xlab="r", ylab="c", zlab="mu(r,c)", theta = -30, phi = 30,
expand = 0.5, col = "lightblue", ltheta = 120, shade = 0.05, ticktype = "detailed")

End(Not run)

Not run:
#Examples for asyvarPE1D
asyvarPE1D(1.2,.8)

rseq<-seq(1.01,5,by=.1)
cseq<-seq(0.01,.99,by=.1)

lrseq<-length(rseq)
lcseq<-length(cseq)

var.grid<-matrix(0,nrow=lrseq,ncol=lcseq)
for (i in 1:lrseq)

for (j in 1:lcseq)
{

var.grid[i,j]<-asyvarPE1D(rseq[i],cseq[j])
}

persp(rseq,cseq,var.grid, xlab="r", ylab="c", zlab="var(r,c)", theta = -30, phi = 30,
expand = 0.5, col = "lightblue", ltheta = 120, shade = 0.05, ticktype = "detailed")

End(Not run)

funsMuVarPE2D Returns the mean and (asymptotic) variance of arc density of Propor-
tional Edge Proximity Catch Digraph (PE-PCD) for 2D uniform data
in one triangle

funsMuVarPE2D 131

Description

Two functions: muPE2D and asyvarPE2D.

muPE2D returns the mean of the (arc) density of PE-PCD and asyvarPE2D returns the asymptotic
variance of the arc density of PE-PCD for 2D uniform data in a triangle.

PE proximity regions are defined with expansion parameter r ≥ 1 with respect to the triangle in
which the points reside and vertex regions are based on center of mass, CM of the triangle.

See also (Ceyhan et al. (2006)).

Usage

muPE2D(r)

asyvarPE2D(r)

Arguments

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

Value

muPE2D returns the mean and asyvarPE2D returns the (asymptotic) variance of the arc density of
PE-PCD for uniform data in any triangle.

Author(s)

Elvan Ceyhan

References

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

muCS2D and asyvarCS2D

Examples

Not run:
#Examples for muPE2D
muPE2D(1.2)

rseq<-seq(1.01,5,by=.05)
lrseq<-length(rseq)

mu<-vector()
for (i in 1:lrseq)

132 funsMuVarPEend.int

{
mu<-c(mu,muPE2D(rseq[i]))

}

plot(rseq, mu,type="l",xlab="r",ylab=expression(mu(r)),lty=1,
xlim=range(rseq),ylim=c(0,1))

End(Not run)

Not run:
#Examples for asyvarPE2D
asyvarPE2D(1.2)

rseq<-seq(1.01,5,by=.05)
lrseq<-length(rseq)

avar<-vector()
for (i in 1:lrseq)
{

avar<-c(avar,asyvarPE2D(rseq[i]))
}

par(mar=c(5,5,4,2))
plot(rseq, avar,type="l",xlab="r",
ylab=expression(paste(sigma^2,"(r)")),lty=1,xlim=range(rseq))

End(Not run)

funsMuVarPEend.int Returns the mean and (asymptotic) variance of arc density of Propor-
tional Edge Proximity Catch Digraph (PE-PCD) for 1D data - end
interval case

Description

Two functions: muPEend.int and asyvarPEend.int.

muPEend.int returns the mean of the arc density of PE-PCD and asyvarPEend.int returns the
asymptotic variance of the arc density of PE-PCD for a given expansion parameter r ≥ 1 for 1D
uniform data in the left and right end intervals for the interval (a, b).

See also (Ceyhan (2012)).

Usage

muPEend.int(r)

asyvarPEend.int(r)

funsMuVarPEend.int 133

Arguments

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

Value

muPEend.int returns the mean and asyvarPEend.int returns the asymptotic variance of the arc
density of PE-PCD for uniform data in end intervals

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

muCSend.int and asyvarCSend.int

Examples

Not run:
#Examples for muPEend.int
muPEend.int(1.2)

rseq<-seq(1.01,5,by=.1)
lrseq<-length(rseq)

mu.end<-vector()
for (i in 1:lrseq)
{

mu.end<-c(mu.end,muPEend.int(rseq[i]))
}

plot(rseq, mu.end,type="l",
ylab=expression(paste(mu,"(r)")),xlab="r",lty=1,xlim=range(rseq),ylim=c(0,1))

End(Not run)

Not run:
#Examples for asyvarPEend.int
asyvarPEend.int(1.2)

rseq<-seq(1.01,5,by=.1)
lrseq<-length(rseq)

var.end<-vector()
for (i in 1:lrseq)

134 funsPDomNum2PE1D

{
var.end<-c(var.end,asyvarPEend.int(rseq[i]))

}

par(mar=c(5,5,4,2))
plot(rseq, var.end,type="l",
xlab="r",ylab=expression(paste(sigma^2,"(r)")),lty=1,xlim=range(rseq))

End(Not run)

funsPDomNum2PE1D The functions for probability of domination number = 2 for Propor-
tional Edge Proximity Catch Digraphs (PE-PCDs) - middle interval
case

Description

The function Pdom.num2PE1D and its auxiliary functions.

Returns P (γ = 2) for PE-PCD whose vertices are a uniform data set of size n in a finite interval
(a, b) where γ stands for the domination number.

The PE proximity region NPE(x, r, c) is defined with respect to (a, b) with centrality parameter
c ∈ (0, 1) and expansion parameter r ≥ 1.

To compute the probability P (γ = 2) for PE-PCD in the 1D case, we partition the domain (r, c) =
(1,∞)× (0, 1), and compute the probability for each partition set. The sample size (i.e., number of
vertices or data points) is a positive integer, n.

Usage

Pdom.num2AI(r, c, n)

Pdom.num2AII(r, c, n)

Pdom.num2AIII(r, c, n)

Pdom.num2AIV(r, c, n)

Pdom.num2A(r, c, n)

Pdom.num2Asym(r, c, n)

Pdom.num2BIII(r, c, n)

Pdom.num2B(r, c, n)

Pdom.num2Bsym(r, c, n)

funsPDomNum2PE1D 135

Pdom.num2CIV(r, c, n)

Pdom.num2C(r, c, n)

Pdom.num2Csym(r, c, n)

Pdom.num2PE1D(r, c, n)

Arguments

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b).
For the interval, (a, b), the parameterized center is Mc = a+ c(b− a).

n A positive integer representing the size of the uniform data set.

Value

P (domination number≤ 1) for PE-PCD whose vertices are a uniform data set of size n in a finite
interval (a, b)

Auxiliary Functions for Pdom.num2PE1D

The auxiliary functions are Pdom.num2AI, Pdom.num2AII, Pdom.num2AIII, Pdom.num2AIV, Pdom.num2A,
Pdom.num2Asym, Pdom.num2BIII, Pdom.num2B, Pdom.num2B,Pdom.num2Bsym, Pdom.num2CIV, Pdom.num2C,
and Pdom.num2Csym, each corresponding to a partition of the domain of r and c. In particular, the
domain partition is handled in 3 cases as

CASE A: c ∈ ((3−
√
5)/2, 1/2)

CASE B: c ∈ (1/4, (3−
√
5)/2) and

CASE C: c ∈ (0, 1/4).

Case A - c ∈ ((3−
√
5)/2, 1/2)

In Case A, we compute P (γ = 2) with

Pdom.num2AIV(r,c,n) if 1 < r < (1− c)/c;

Pdom.num2AIII(r,c,n) if (1− c)/c < r < 1/(1− c);

Pdom.num2AII(r,c,n) if 1/(1− c) < r < 1/c;

and Pdom.num2AI(r,c,n) otherwise.

Pdom.num2A(r,c,n) combines these functions in Case A: c ∈ ((3 −
√
5)/2, 1/2). Due to the

symmetry in the PE proximity regions, we use Pdom.num2Asym(r,c,n) for c in (1/2, (
√
5− 1)/2)

with the same auxiliary functions

Pdom.num2AIV(r,1-c,n) if 1 < r < c/(1− c);

Pdom.num2AIII(r,1-c,n) if (c/(1− c) < r < 1/c;

Pdom.num2AII(r,1-c,n) if 1/c < r < 1/(1− c);

and Pdom.num2AI(r,1-c,n) otherwise.

136 funsPDomNum2PE1D

Case B - c ∈ (1/4, (3−
√
5)/2)

In Case B, we compute P (γ = 2) with

Pdom.num2AIV(r,c,n) if 1 < r < 1/(1− c);

Pdom.num2BIII(r,c,n) if 1/(1− c) < r < (1− c)/c;

Pdom.num2AII(r,c,n) if (1− c)/c < r < 1/c;

and Pdom.num2AI(r,c,n) otherwise.

Pdom.num2B(r,c,n) combines these functions in Case B: c ∈ (1/4, (3 −
√
5)/2). Due to the

symmetry in the PE proximity regions, we use Pdom.num2Bsym(r,c,n) for c in ((
√
5− 1)/2, 3/4)

with the same auxiliary functions

Pdom.num2AIV(r,1-c,n) if 1 < r < 1/c;

Pdom.num2BIII(r,1-c,n) if 1/c < r < c/(1− c);

Pdom.num2AII(r,1-c,n) if c/(1− c) < r < 1/(1− c);

and Pdom.num2AI(r,1-c,n) otherwise.

Case C - c ∈ (0, 1/4)

In Case C, we compute P (γ = 2) with

Pdom.num2AIV(r,c,n) if 1 < r < 1/(1− c);

Pdom.num2BIII(r,c,n) if 1/(1− c) < r < (1−
√
1− 4c)/(2c);

Pdom.num2CIV(r,c,n) if (1−
√
1− 4c)/(2c) < r < (1 +

√
1− 4c)/(2c);

Pdom.num2BIII(r,c,n) if (1 +
√
1− 4c)/(2c) < r < 1/(1− c);

Pdom.num2AII(r,c,n) if 1/(1− c) < r < 1/c;

and Pdom.num2AI(r,c,n) otherwise.

Pdom.num2C(r,c,n) combines these functions in Case C: c ∈ (0, 1/4). Due to the symmetry in
the PE proximity regions, we use Pdom.num2Csym(r,c,n) for c ∈ (3/4, 1) with the same auxiliary
functions

Pdom.num2AIV(r,1-c,n) if 1 < r < 1/c;

Pdom.num2BIII(r,1-c,n) if 1/c < r < (1−
√

1− 4(1− c))/(2(1− c));

Pdom.num2CIV(r,1-c,n) if (1−
√

1− 4(1− c))/(2(1− c)) < r < (1+
√
1− 4(1− c))/(2(1−

c));

Pdom.num2BIII(r,1-c,n) if (1 +
√
1− 4(1− c))/(2(1− c)) < r < c/(1− c);

Pdom.num2AII(r,1-c,n) if c/(1− c) < r < 1/(1− c);

and Pdom.num2AI(r,1-c,n) otherwise.

Combining Cases A, B, and C, we get our main function Pdom.num2PE1D which computes P (γ =
2) for any (r,c) in its domain.

Author(s)

Elvan Ceyhan

funsRankOrderTe 137

See Also

Pdom.num2PEtri and Pdom.num2PE1Dasy

Examples

#Examples for the main function Pdom.num2PE1D
r<-2
c<-.5

Pdom.num2PE1D(r,c,n=10)
Pdom.num2PE1D(r=1.5,c=1/1.5,n=100)

funsRankOrderTe Returns the ranks and orders of points in decreasing distance to the
edges of the triangle

Description

Two functions: rank.dist2edges.std.tri and order.dist2edges.std.tri.

rank.dist2edges.std.tri finds the ranks of the distances of points in data, Xp, to the edges of
the standard equilateral triangle Te = T ((0, 0), (1, 0), (1/2,

√
3/2))

dec is a logical argument, default is TRUE, so the ranks are for decreasing distances, if FALSE it will
be in increasing distances.

order.dist2edges.std.tri finds the orders of the distances of points in data, Xp, to the edges of
Te. The arguments are as in rank.dist2edges.std.tri.

Usage

rank.dist2edges.std.tri(Xp, dec = TRUE)

order.dist2edges.std.tri(Xp, dec = TRUE)

Arguments

Xp A set of 2D points representing the data set in which ranking in terms of the
distance to the edges of Te is performed.

dec A logical argument indicating the how the ranking will be performed. If TRUE,
the ranks are for decreasing distances, and if FALSE they will be in increasing
distances, default is TRUE.

Value

A list with two elements

distances Distances from data points to the edges of Te

dist.rank The ranks of the data points in decreasing distances to the edges of Te

138 funsRankOrderTe

Author(s)

Elvan Ceyhan

Examples

Not run:
#Examples for rank.dist2edges.std.tri
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points

dec.dist<-rank.dist2edges.std.tri(Xp)
dec.dist
dec.dist.rank<-dec.dist[[2]]
#the rank of distances to the edges in decreasing order
dec.dist.rank

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);

Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.0,.01),
ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp,pch=".")
text(Xp,labels = factor(dec.dist.rank))

inc.dist<-rank.dist2edges.std.tri(Xp,dec = FALSE)
inc.dist
inc.dist.rank<-inc.dist[[2]]
#the rank of distances to the edges in increasing order
inc.dist.rank
dist<-inc.dist[[1]] #distances to the edges of the std eq. triangle
dist

plot(A,pch=".",xlab="",ylab="",xlim=Xlim,ylim=Ylim)
polygon(Te)
points(Xp,pch=".",xlab="",ylab="", main="",xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05))
text(Xp,labels = factor(inc.dist.rank))

End(Not run)

Not run:
#Examples for order.dist2edges.std.tri
n<-10
set.seed(1)
Xp<-runif.std.tri(n)$gen.points #try also Xp<-cbind(runif(n),runif(n))

funsTbMid2CC 139

dec.dist<-order.dist2edges.std.tri(Xp)
dec.dist
dec.dist.order<-dec.dist[[2]]
#the order of distances to the edges in decreasing order
dec.dist.order

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);

Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.01,.01),
ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp,pch=".")
text(Xp[dec.dist.order,],labels = factor(1:n))

inc.dist<-order.dist2edges.std.tri(Xp,dec = FALSE)
inc.dist
inc.dist.order<-inc.dist[[2]]
#the order of distances to the edges in increasing order
inc.dist.order
dist<-inc.dist[[1]] #distances to the edges of the std eq. triangle
dist
dist[inc.dist.order] #distances in increasing order

plot(A,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp,pch=".")
text(Xp[inc.dist.order,],labels = factor(1:n))

End(Not run)

funsTbMid2CC Two functions lineD1CCinTb and lineD2CCinTb which are of class
"TriLines" — The lines joining the midpoints of edges to the circum-
center (CC) in the standard basic triangle.

Description

Returns the equation, slope, intercept, and y-coordinates of the lines joining D1 and CC and
also D2 and CC, in the standard basic triangle Tb = T (A = (0, 0), B = (1, 0), C = (c1, c2))
where c1 is in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1 and D1 = (B +C)/2 and D2 = (A+C)/2
are the midpoints of edges BC and AC.

140 funsTbMid2CC

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence standard basic triangle is useful for simulation studies under the
uniformity hypothesis. x-coordinates are provided in vector x.

Usage

lineD1CCinTb(x, c1, c2)

lineD2CCinTb(x, c1, c2)

Arguments

x A single scalar or a vector of scalars.

c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; c1 must be in [0, 1/2], c2 > 0 and (1−c1)

2+c22 ≤
1.

Value

A list with the elements

txt1 Longer description of the line.

txt2 Shorter description of the line (to be inserted over the line in the plot).

mtitle The "main" title for the plot of the line.

cent The center chosen inside the standard equilateral triangle.

cent.name The name of the center inside the standard basic triangle. It is "CC" for these
two functions.

tri The triangle (it is the standard basic triangle for this function).

x The input vector, can be a scalar or a vector of scalars, which constitute the
x-coordinates of the point(s) of interest on the line.

y The output vector, will be a scalar if x is a scalar or a vector of scalars if x is a
vector of scalar, constitutes the y-coordinates of the point(s) of interest on the
line.

slope Slope of the line.

intercept Intercept of the line.

equation Equation of the line.

Author(s)

Elvan Ceyhan

See Also

lineA2CMinTe, lineB2CMinTe, lineA2MinTe, lineB2MinTe, and lineC2MinTe

funsTbMid2CC 141

Examples

Not run:
#Examples for lineD1CCinTb
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2); #the vertices of the standard basic triangle Tb

Tb<-rbind(A,B,C)

xfence<-abs(A[1]-B[1])*.25 #how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by=.1) #try also by=.01

lnD1CC<-lineD1CCinTb(x,c1,c2)
lnD1CC
summary(lnD1CC)
plot(lnD1CC)

CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)

x1<-seq(0,1,by=.1) #try also by=.01
y1<-lineD1CCinTb(x1,c1,c2)$y

Xlim<-range(Tb[,1],x1)
Ylim<-range(Tb[,2],y1)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",asp=1,xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)

txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.04,.03,.02,.09,-.08,0)
yc<-txt[,2]+c(.02,.02,.04,.08,.03,.03,-.05)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

lines(x1,y1,type="l",lty=2)
text(.8,.5,"lineD1CCinTb")

c1<-.4; c2<-.6;
x1<-seq(0,1,by=.1) #try also by=.01
lineD1CCinTb(x1,c1,c2)

End(Not run)

Not run:
#Examples for lineD2CCinTb
c1<-.4; c2<-.6;

142 IarcASbasic.tri

A<-c(0,0); B<-c(1,0); C<-c(c1,c2); #the vertices of the standard basic triangle Tb

Tb<-rbind(A,B,C)

xfence<-abs(A[1]-B[1])*.25 #how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,by=.1) #try also by=.01

lnD2CC<-lineD2CCinTb(x,c1,c2)
lnD2CC
summary(lnD2CC)
plot(lnD2CC)

CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2; #midpoints of the edges
Ds<-rbind(D1,D2,D3)

x2<-seq(0,1,by=.1) #try also by=.01
y2<-lineD2CCinTb(x2,c1,c2)$y

Xlim<-range(Tb[,1],x1)
Ylim<-range(Tb[,2],y2)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",asp=1,xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)

txt<-rbind(Tb,CC,D1,D2,D3)
xc<-txt[,1]+c(-.03,.04,.03,.02,.09,-.08,0)
yc<-txt[,2]+c(.02,.02,.04,.08,.03,.03,-.05)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

lines(x2,y2,type="l",lty=2)
text(0,.5,"lineD2CCinTb")

End(Not run)

IarcASbasic.tri The indicator for the presence of an arc from a point to another for Arc
Slice Proximity Catch Digraphs (AS-PCDs) - standard basic triangle
case

Description

Returns I(p2 ∈ NAS(p1)) for points p1 and p2, that is, returns 1 if p2 is in NAS(p1), returns 0
otherwise, where NAS(x) is the AS proximity region for point x.

IarcASbasic.tri 143

AS proximity region is constructed in the standard basic triangle Tb = T ((0, 0), (1, 0), (c1, c2))
where c1 is in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Vertex regions are based on the center M="CC" for circumcenter of Tb; or M = (m1,m2) in Carte-
sian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of Tb; default is M="CC"
i.e., circumcenter of Tb. rv is the index of the vertex region p1 resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside Tb, the function returns 0, but if they are
identical, then it returns 1 regardless of their locations (i.e., it allows loops).

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

See also (Ceyhan (2005, 2010)).

Usage

IarcASbasic.tri(p1, p2, c1, c2, M = "CC", rv = NULL)

Arguments

p1 A 2D point whose AS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the AS proximity
region of p1 or not.

c1, c2 Positive real numbers representing the top vertex in standard basic triangle Tb =
T ((0, 0), (1, 0), (c1, c2)), c1 must be in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

M The center of the triangle. "CC" stands for circumcenter or a 2D point in Carte-
sian coordinates or a 3D point in barycentric coordinates which serves as a center
in the interior of the triangle Tb; default is M="CC" i.e., the circumcenter of Tb.

rv The index of the M-vertex region in Tb containing the point, either 1,2,3 or NULL
(default is NULL).

Value

I(p2 ∈ NAS(p1)) for points p1 and p2, that is, returns 1 if p2 is in NAS(p1) (i.e., if there is an arc
from p1 to p2), returns 0 otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

144 IarcASbasic.tri

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

IarcAStri and NAStri

Examples

Not run:
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)

P1<-as.numeric(runif.basic.tri(1,c1,c2)$g)
P2<-as.numeric(runif.basic.tri(1,c1,c2)$g)
IarcASbasic.tri(P1,P2,c1,c2,M)

P1<-c(.3,.2)
P2<-c(.6,.2)
IarcASbasic.tri(P1,P2,c1,c2,M)

#or try
Rv<-rel.vert.basic.triCC(P1,c1,c2)$rv
IarcASbasic.tri(P1,P2,c1,c2,M,Rv)

P1<-c(.3,.2)
P2<-c(.8,.2)
IarcASbasic.tri(P1,P2,c1,c2,M)

P3<-c(.5,.4)
IarcASbasic.tri(P1,P3,c1,c2,M)

P4<-c(1.5,.4)
IarcASbasic.tri(P1,P4,c1,c2,M)
IarcASbasic.tri(P4,P4,c1,c2,M)

c1<-.4; c2<-.6;
P1<-c(.3,.2)
P2<-c(.6,.2)
IarcASbasic.tri(P1,P2,c1,c2,M)

End(Not run)

IarcASset2pnt.tri 145

IarcASset2pnt.tri The indicator for the presence of an arc from a point in set S to the
point p for Arc Slice Proximity Catch Digraphs (AS-PCDs) - one tri-
angle case

Description

Returns I(pt ∈ NAS(x) for some x ∈ S), that is, returns 1 if p is in ∪x∈SNAS(x), returns 0
otherwise, where NAS(x) is the AS proximity region for point x.

AS proximity regions are constructed with respect to the triangle, tri= T (A,B,C) =(rv=1,rv=2,rv=3),
and vertices of tri are also labeled as 1,2, and 3, respectively.

Vertex regions are based on the center M="CC" for circumcenter of tri; or M = (m1,m2) in
Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of the triangle
tri; default is M="CC" i.e., circumcenter of tri.

If p is not in S and either p or all points in S are outside tri, it returns 0, but if p is in S, then it
always returns 1 (i.e., loops are allowed).

See also (Ceyhan (2005, 2010)).

Usage

IarcASset2pnt.tri(S, p, tri, M = "CC")

Arguments

S A set of 2D points whose AS proximity regions are considered.

p A 2D point. The function determines whether p is inside the union of AS prox-
imity regions of points in S or not.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a
2D point in Cartesian coordinates or a 3D point in barycentric coordinates which
serves as a center in the interior of tri; default is M="CC" i.e., the circumcenter
of tri.

Value

I(pt ∈ ∪xinSNAS(x, r)), that is, returns 1 if p is in S or inside NAS(x) for at least one x in S,
returns 0 otherwise, where AS proximity region is constructed in tri

Author(s)

Elvan Ceyhan

146 IarcASset2pnt.tri

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

IarcAStri, IarcASset2pnt.tri, and IarcCSset2pnt.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points

S<-rbind(Xp[1,],Xp[2,]) #try also S<-c(1.5,1)

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

IarcASset2pnt.tri(S,Xp[3,],Tr,M)

S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
IarcASset2pnt.tri(S,Xp[3,],Tr,M)

IarcASset2pnt.tri(S,Xp[6,],Tr,M)

S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IarcASset2pnt.tri(S,Xp[3,],Tr,M)

IarcASset2pnt.tri(c(.2,.5),Xp[2,],Tr,M)
IarcASset2pnt.tri(Xp,c(.2,.5),Tr,M)
IarcASset2pnt.tri(Xp,Xp[2,],Tr,M)
IarcASset2pnt.tri(c(.2,.5),c(.2,.5),Tr,M)
IarcASset2pnt.tri(Xp[5,],Xp[2,],Tr,M)

S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,],c(.2,.5))
IarcASset2pnt.tri(S,Xp[3,],Tr,M)

P<-c(.4,.2)
S<-Xp[c(1,3,4),]

IarcAStri 147

IarcASset2pnt.tri(Xp,P,Tr,M)
IarcASset2pnt.tri(S,P,Tr,M)

IarcASset2pnt.tri(rbind(S,S),P,Tr,M)

End(Not run)

IarcAStri The indicator for the presence of an arc from a point to another for
Arc Slice Proximity Catch Digraphs (AS-PCDs) - one triangle case

Description

Returns I(p2 ∈ NAS(p1)) for points p1 and p2, that is, returns 1 if p2 is in NAS(p1), returns 0
otherwise, where NAS(x) is the AS proximity region for point x.

AS proximity regions are constructed with respect to the triangle, tri= T (A,B,C) =(rv=1,rv=2,rv=3),
and vertex regions are based on the center M="CC" for circumcenter of tri; or M = (m1,m2) in
Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of the triangle
tri; default is M="CC" i.e., circumcenter of tri. rv is the index of the vertex region p1 resides, with
default=NULL.

If p1 and p2 are distinct and either of them are outside tri, the function returns 0, but if they are
identical, then it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005, 2010)).

Usage

IarcAStri(p1, p2, tri, M = "CC", rv = NULL)

Arguments

p1 A 2D point whose AS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the AS proximity
region of p1 or not.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a
2D point in Cartesian coordinates or a 3D point in barycentric coordinates which
serves as a center in the interior of tri; default is M="CC" i.e., the circumcenter
of tri.

rv The index of the M-vertex region in tri containing the point, either 1,2,3 or
NULL (default is NULL).

Value

I(p2 ∈ NAS(p1)) for p1, that is, returns 1 if p2 is in NAS(p1), returns 0 otherwise

148 IarcAStri

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

IarcASbasic.tri, IarcPEtri, and IarcCStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);

Tr<-rbind(A,B,C);

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

P1<-as.numeric(runif.tri(1,Tr)$g)
P2<-as.numeric(runif.tri(1,Tr)$g)
IarcAStri(P1,P2,Tr,M)

P1<-c(1.3,1.2)
P2<-c(1.8,.5)
IarcAStri(P1,P2,Tr,M)
IarcAStri(P1,P1,Tr,M)

#or try
Rv<-rel.vert.triCC(P1,Tr)$rv
IarcAStri(P1,P2,Tr,M,Rv)

P3<-c(1.6,1.4)
IarcAStri(P1,P3,Tr,M)

P4<-c(1.5,1.0)
IarcAStri(P1,P4,Tr,M)

P5<-c(.5,1.0)
IarcAStri(P1,P5,Tr,M)
IarcAStri(P5,P5,Tr,M)

IarcCS.Te.onesixth 149

#or try
Rv<-rel.vert.triCC(P5,Tr)$rv
IarcAStri(P5,P5,Tr,M,Rv)

End(Not run)

IarcCS.Te.onesixth The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - first one-
sixth of the standard equilateral triangle case

Description

Returns I(p2 is in NCS(p1, t = 1)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t = 1),
returns 0 otherwise, where NCS(x, t = 1) is the CS proximity region for point x with expansion
parameter t = 1.

CS proximity region is defined with respect to the standard equilateral triangle Te = T (A,B,C) =
T ((0, 0), (1, 0), (1/2,

√
3/2)) and edge regions are based on the center of mass CM = (1/2,

√
3/6).

Here p1 must lie in the first one-sixth of Te, which is the triangle with vertices T (A,D3, CM) =
T ((0, 0), (1/2, 0), CM). If p1 and p2 are distinct and p1 is outside of T (A,D3, CM) or p2 is
outside Te, it returns 0, but if they are identical, then it returns 1 regardless of their locations (i.e., it
allows loops).

Usage

IarcCS.Te.onesixth(p1, p2)

Arguments

p1 A 2D point whose CS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.

Value

I(p2 is in NCS(p1, t = 1)) for p1 in the first one-sixth of Te, T (A,D3, CM), that is, returns 1 if
p2 is in NCS(p1, t = 1), returns 0 otherwise

Author(s)

Elvan Ceyhan

See Also

IarcCSstd.tri

150 IarcCSbasic.tri

IarcCSbasic.tri The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard
basic triangle case

Description

Returns I(p2 is in NCS(p1, t)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t), returns
0 otherwise, where NCS(x, t) is the CS proximity region for point x with expansion parameter
r ≥ 1.

CS proximity region is defined with respect to the standard basic triangle Tb = T ((0, 0), (1, 0), (c1, c2))
where c1 is in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Edge regions are based on the center, M = (m1,m2) in Cartesian coordinates or M = (α, β, γ)
in barycentric coordinates in the interior of the standard basic triangle Tb; default is M = (1, 1, 1)
i.e., the center of mass of Tb. re is the index of the edge region p1 resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside Tb, it returns 0, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation, and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

IarcCSbasic.tri(p1, p2, t, c1, c2, M = c(1, 1, 1), re = NULL)

Arguments

p1 A 2D point whose CS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.

t A positive real number which serves as the expansion parameter in CS proximity
region; must be ≥ 1

c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; c1 must be in [0, 1/2], c2 > 0 and (1−c1)

2+c22 ≤
1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard basic triangle or circum-
center of Tb; default is M = (1, 1, 1) i.e., the center of mass of Tb.

re The index of the edge region in Tb containing the point, either 1,2,3 or NULL
(default is NULL).

IarcCSbasic.tri 151

Value

I(p2 is in NCS(p1, t)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t), returns 0
otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

IarcCStri and IarcCSstd.tri

Examples

Not run:
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);

M<-as.numeric(runif.basic.tri(1,c1,c2)$g)

tau<-2

P1<-as.numeric(runif.basic.tri(1,c1,c2)$g)
P2<-as.numeric(runif.basic.tri(1,c1,c2)$g)
IarcCSbasic.tri(P1,P2,tau,c1,c2,M)

P1<-c(.4,.2)
P2<-c(.5,.26)
IarcCSbasic.tri(P1,P2,tau,c1,c2,M)
IarcCSbasic.tri(P1,P1,tau,c1,c2,M)

#or try
Re<-rel.edge.basic.tri(P1,c1,c2,M)$re
IarcCSbasic.tri(P1,P2,tau,c1,c2,M,Re)
IarcCSbasic.tri(P1,P1,tau,c1,c2,M,Re)

End(Not run)

152 IarcCSedge.reg.std.tri

IarcCSedge.reg.std.tri

The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard
equilateral triangle case

Description

Returns I(p2 is in NCS(p1, t)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t), returns
0 otherwise, where NCS(x, t) is the CS proximity region for point x with expansion parameter
t > 0. This function is equivalent to IarcCSstd.tri, except that it computes the indicator using the
functions IarcCSstd.triRAB, IarcCSstd.triRBC and IarcCSstd.triRAC which are edge-region
specific indicator functions. For example, IarcCSstd.triRAB computes I(p2 is in NCS(p1, t)) for
points p1 and p2 when p1 resides in the edge region of edge AB.

CS proximity region is defined with respect to the standard equilateral triangle Te = T (v = 1, v =
2, v = 3) = T ((0, 0), (1, 0), (1/2,

√
3/2)) and edge regions are based on the center M = (m1,m2)

in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of Te; default
is M = (1, 1, 1) i.e., the center of mass of Te. re is the index of the edge region p1 resides, with
default=NULL.

If p1 and p2 are distinct and either of them are outside Te, it returns 0, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

IarcCSedge.reg.std.tri(p1, p2, t, M = c(1, 1, 1), re = NULL)

Arguments

p1 A 2D point whose CS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle Te;
default is M = (1, 1, 1) i.e. the center of mass of Te.

re The index of the edge region in Te containing the point, either 1,2,3 or NULL
(default is NULL).

Value

I(p2 is in NCS(p1, t)) for p1, that is, returns 1 if p2 is in NCS(p1, t), returns 0 otherwise

IarcCSend.int 153

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

IarcCStri and IarcPEstd.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-3

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

t<-1
IarcCSedge.reg.std.tri(Xp[1,],Xp[2,],t,M)
IarcCSstd.tri(Xp[1,],Xp[2,],t,M)

#or try
re<-rel.edge.std.triCM(Xp[1,])$re
IarcCSedge.reg.std.tri(Xp[1,],Xp[2,],t,M,re=re)

End(Not run)

IarcCSend.int The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - end inter-
val case

154 IarcCSend.int

Description

Returns I(p2 in NCS(p1, t)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t), returns 0
otherwise, where NCS(x, t) is the CS proximity region for point x with expansion parameter t > 0
for the region outside the interval (a, b).

rv is the index of the end vertex region p1 resides, with default=NULL, and rv=1 for left end interval
and rv=2 for the right end interval. If p1 and p2 are distinct and either of them are inside interval
int, it returns 0, but if they are identical, then it returns 1 regardless of their locations (i.e., it allows
loops).

See also (Ceyhan (2016)).

Usage

IarcCSend.int(p1, p2, int, t, rv = NULL)

Arguments

p1 A 1D point for which the CS proximity region is constructed.

p2 A 1D point to check whether it is inside the proximity region or not.

int A vector of two real numbers representing an interval.

t A positive real number which serves as the expansion parameter in CS proximity
region.

rv Index of the end interval containing the point, either 1,2 or NULL (default=NULL).

Value

I(p2 in NCS(p1, t)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t) (i.e., if there is an
arc from p1 to p2), returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

IarcCSmid.int, IarcPEmid.int, and IarcPEend.int

Examples

a<-0; b<-10; int<-c(a,b)
t<-2

IarcCSend.int(15,17,int,t)
IarcCSend.int(15,15,int,t)

IarcCSint 155

IarcCSend.int(1.5,17,int,t)
IarcCSend.int(1.5,1.5,int,t)

IarcCSend.int(-15,17,int,t)

IarcCSend.int(-15,-17,int,t)

a<-0; b<-10; int<-c(a,b)
t<-.5

IarcCSend.int(15,17,int,t)

IarcCSint The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - one inter-
val case

Description

Returns I(p2 in NCS(p1, t, c)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t, c), returns
0 otherwise, where NCS(x, t, c) is the CS proximity region for point x with expansion parameter
t > 0 and centrality parameter c ∈ (0, 1).

CS proximity region is constructed with respect to the interval (a, b). This function works whether
p1 and p2 are inside or outside the interval int.

Vertex regions for middle intervals are based on the center associated with the centrality parameter
c ∈ (0, 1). If p1 and p2 are identical, then it returns 1 regardless of their locations (i.e., loops are
allowed in the digraph).

See also (Ceyhan (2016)).

Usage

IarcCSint(p1, p2, int, t, c = 0.5)

Arguments

p1 A 1D point for which the proximity region is constructed.

p2 A 1D point for which it is checked whether it resides in the proximity region of
p1 or not.

int A vector of two real numbers representing an interval.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

156 IarcCSmid.int

Value

I(p2 in NCS(p1, t, c)) for p2, that is, returns 1 if p2 in NCS(p1, t, c), returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

IarcCSmid.int, IarcCSend.int and IarcPEint

Examples

c<-.4
t<-2
a<-0; b<-10; int<-c(a,b)

IarcCSint(7,5,int,t,c)
IarcCSint(17,17,int,t,c)
IarcCSint(15,17,int,t,c)
IarcCSint(1,3,int,t,c)

IarcCSint(-17,17,int,t,c)

IarcCSint(3,5,int,t,c)
IarcCSint(3,3,int,t,c)
IarcCSint(4,5,int,t,c)
IarcCSint(a,5,int,t,c)

c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

IarcCSint(7,5,int,t,c)

IarcCSmid.int The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - middle in-
terval case

IarcCSmid.int 157

Description

Returns I(p2 in NCS(p1, t, c)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t, c),
returns 0 otherwise, where NCS(x, t, c) is the CS proximity region for point x and is constructed
with expansion parameter t > 0 and centrality parameter c ∈ (0, 1) for the interval (a, b).

CS proximity regions are defined with respect to the middle interval int and vertex regions are
based on the center associated with the centrality parameter c ∈ (0, 1). For the interval, int= (a, b),
the parameterized center is Mc = a+ c(b− a). rv is the index of the vertex region p1 resides, with
default=NULL.

If p1 and p2 are distinct and either of them are outside interval int, it returns 0, but if they are
identical, then it returns 1 regardless of their locations (i.e., loops are allowed in the digraph).

See also (Ceyhan (2016)).

Usage

IarcCSmid.int(p1, p2, int, t, c = 0.5, rv = NULL)

Arguments

p1, p2 1D points; p1 is the point for which the proximity region, NCS(p1, t, c) is con-
structed and p2 is the point which the function is checking whether its inside
NCS(p1, t, c) or not.

int A vector of two real numbers representing an interval.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

rv Index of the end interval containing the point, either 1,2 or NULL (default is
NULL).

Value

I(p2 in NCS(p1, t, c)) for points p1 and p2 that is, returns 1 if p2 is in NCS(p1, t, c), returns 0
otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

IarcCSend.int, IarcPEmid.int, and IarcPEend.int

158 IarcCSset2pnt.std.tri

Examples

c<-.5
t<-2
a<-0; b<-10; int<-c(a,b)

IarcCSmid.int(7,5,int,t,c)
IarcCSmid.int(7,7,int,t,c)
IarcCSmid.int(7,5,int,t,c=.4)

IarcCSmid.int(1,3,int,t,c)

IarcCSmid.int(9,11,int,t,c)

IarcCSmid.int(19,1,int,t,c)
IarcCSmid.int(19,19,int,t,c)

IarcCSmid.int(3,5,int,t,c)

#or try
Rv<-rel.vert.mid.int(3,int,c)$rv
IarcCSmid.int(3,5,int,t,c,rv=Rv)

IarcCSmid.int(7,5,int,t,c)

IarcCSset2pnt.std.tri The indicator for the presence of an arc from a point in set S to the
point p for Central Similarity Proximity Catch Digraphs (CS-PCDs) -
standard equilateral triangle case

Description

Returns I(p in NCS(x, t) for some x in S), that is, returns 1 if p is in ∪xinSNCS(x, t), returns 0
otherwise, CS proximity region is constructed with respect to the standard equilateral triangle Te =
T (A,B,C) = T ((0, 0), (1, 0), (1/2,

√
3/2)) with the expansion parameter t > 0 and edge regions

are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric
coordinates in the interior of Te; default is M = (1, 1, 1) i.e., the center of mass of Te (which is
equivalent to circumcenter of Te).

Edges of Te, AB, BC, AC, are also labeled as edges 3, 1, and 2, respectively. If p is not in S
and either p or all points in S are outside Te, it returns 0, but if p is in S, then it always returns 1
regardless of its location (i.e., loops are allowed).

See also (Ceyhan (2012)).

Usage

IarcCSset2pnt.std.tri(S, p, t, M = c(1, 1, 1))

IarcCSset2pnt.std.tri 159

Arguments

S A set of 2D points. Presence of an arc from a point in S to point p is checked by
the function.

p A 2D point. Presence of an arc from a point in S to point p is checked by the
function.

t A positive real number which serves as the expansion parameter in CS proximity
region in the standard equilateral triangle Te = T ((0, 0), (1, 0), (1/2,

√
3/2)).

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle Te;
default is M = (1, 1, 1) i.e., the center of mass of Te.

Value

I(p is in ∪xinSNCS(x, t)), that is, returns 1 if p is in S or inside NCS(x, t) for at least one x in
S, returns 0 otherwise. CS proximity region is constructed with respect to the standard equilateral
triangle Te = T (A,B,C) = T ((0, 0), (1, 0), (1/2,

√
3/2)) with M-edge regions.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number of
random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

IarcCSset2pnt.tri, IarcCSstd.tri, IarcCStri, and IarcPEset2pnt.std.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

t<-.5

S<-rbind(Xp[1,],Xp[2,]) #try also S<-c(.5,.5)
IarcCSset2pnt.std.tri(S,Xp[3,],t,M)
IarcCSset2pnt.std.tri(S,Xp[3,],t=1,M)
IarcCSset2pnt.std.tri(S,Xp[3,],t=1.5,M)

160 IarcCSset2pnt.tri

S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IarcCSset2pnt.std.tri(S,Xp[3,],t,M)

End(Not run)

IarcCSset2pnt.tri The indicator for the presence of an arc from a point in set S to the
point p for Central Similarity Proximity Catch Digraphs (CS-PCDs) -
one triangle case

Description

Returns I(p in NCS(x, t) for some x in S), that is, returns 1 if p in ∪xinSNCS(x, t), returns 0
otherwise.

CS proximity region is constructed with respect to the triangle tri with the expansion parameter
t > 0 and edge regions are based on the center, M = (m1,m2) in Cartesian coordinates or M =
(α, β, γ) in barycentric coordinates in the interior of the triangle tri; default is M = (1, 1, 1) i.e.,
the center of mass of tri.

Edges of tri= T (A,B,C), AB, BC, AC, are also labeled as edges 3, 1, and 2, respectively. If p
is not in S and either p or all points in S are outside tri, it returns 0, but if p is in S, then it always
returns 1 regardless of its location (i.e., loops are allowed).

Usage

IarcCSset2pnt.tri(S, p, tri, t, M = c(1, 1, 1))

Arguments

S A set of 2D points. Presence of an arc from a point in S to point p is checked by
the function.

p A 2D point. Presence of an arc from a point in S to point p is checked by the
function.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region constructed in the triangle tri.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri; default is M =
(1, 1, 1) i.e., the center of mass of tri.

Value

I(p is in ∪xinSNCS(x, t)), that is, returns 1 if p is in S or inside NCS(x, t) for at least one x in S,
returns 0 otherwise where CS proximity region is constructed with respect to the triangle tri

IarcCSstd.tri 161

Author(s)

Elvan Ceyhan

See Also

IarcCSset2pnt.std.tri, IarcCStri, IarcCSstd.tri, IarcASset2pnt.tri, and IarcPEset2pnt.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points

S<-rbind(Xp[1,],Xp[2,]) #try also S<-c(1.5,1)

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

tau<-.5

IarcCSset2pnt.tri(S,Xp[3,],Tr,tau,M)
IarcCSset2pnt.tri(S,Xp[3,],Tr,t=1,M)
IarcCSset2pnt.tri(S,Xp[3,],Tr,t=1.5,M)

S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IarcCSset2pnt.tri(S,Xp[3,],Tr,tau,M)

End(Not run)

IarcCSstd.tri The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard
equilateral triangle case

Description

Returns I(p2 is in NCS(p1, t)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t), returns
0 otherwise, where NCS(x, t) is the CS proximity region for point x with expansion parameter
t > 0.

CS proximity region is defined with respect to the standard equilateral triangle Te = T (v =
1, v = 2, v = 3) = T ((0, 0), (1, 0), (1/2,

√
3/2)) and vertex regions are based on the center

M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior
of Te; default is M = (1, 1, 1) i.e., the center of mass of Te. rv is the index of the vertex region p1
resides, with default=NULL.

162 IarcCSstd.tri

If p1 and p2 are distinct and either of them are outside Te, it returns 0, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

IarcCSstd.tri(p1, p2, t, M = c(1, 1, 1), re = NULL)

Arguments

p1 A 2D point whose CS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle Te;
default is M = (1, 1, 1) i.e. the center of mass of Te.

re The index of the edge region in Te containing the point, either 1,2,3 or NULL
(default is NULL).

Value

I(p2 is in NCS(p1, t)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t), returns 0
otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

IarcCStri, IarcCSbasic.tri, and IarcPEstd.tri

IarcCSt1.std.tri 163

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-3

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2) or M=(A+B+C)/3

IarcCSstd.tri(Xp[1,],Xp[3,],t=2,M)
IarcCSstd.tri(c(0,1),Xp[3,],t=2,M)

#or try
Re<-rel.edge.tri(Xp[1,],Te,M) $re
IarcCSstd.tri(Xp[1,],Xp[3,],t=2,M,Re)

End(Not run)

IarcCSt1.std.tri The indicator for the presence of an arc from a point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard
equilateral triangle case with t = 1

Description

Returns I(p2 is in NCS(p1, t = 1)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t = 1),
returns 0 otherwise, where NCS(x, t = 1) is the CS proximity region for point x with expansion
parameter t = 1.

CS proximity region is defined with respect to the standard equilateral triangle Te = T (A,B,C) =
T ((0, 0), (1, 0), (1/2,

√
3/2)) and edge regions are based on the center of mass CM = (1/2,

√
3/6).

If p1 and p2 are distinct and either are outside Te, it returns 0, but if they are identical, then it returns
1 regardless of their locations (i.e., it allows loops).

Usage

IarcCSt1.std.tri(p1, p2)

Arguments

p1 A 2D point whose CS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.

164 IarcCStri

Value

I(p2 is in NCS(p1, t = 1)) for p1 in Te that is, returns 1 if p2 is in NCS(p1, t = 1), returns 0
otherwise

Author(s)

Elvan Ceyhan

See Also

IarcCSstd.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-3

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

IarcCSt1.std.tri(Xp[1,],Xp[2,])
IarcCSt1.std.tri(c(.2,.5),Xp[2,])

End(Not run)

IarcCStri The indicator for the presence of an arc from one point to another for
Central Similarity Proximity Catch Digraphs (CS-PCDs)

Description

Returns I(p2 is in NCS(p1, t)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t), returns
0 otherwise, where NCS(x, t) is the CS proximity region for point x with the expansion parameter
t > 0.

CS proximity region is constructed with respect to the triangle tri and edge regions are based on
the center, M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in
the interior of tri or based on the circumcenter of tri. re is the index of the edge region p resides,
with default=NULL

If p1 and p2 are distinct and either of them are outside tri, it returns 0, but if they are identical,
then it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

IarcCStri(p1, p2, tri, t, M, re = NULL)

IarcCStri 165

Arguments

p1 A 2D point whose CS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri.

re Index of the M-edge region containing the point p, either 1,2,3 or NULL (default
is NULL).

Value

I(p2 is in NCS(p1, t)) for p1, that is, returns 1 if p2 is in NCS(p1, t), returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

IarcAStri, IarcPEtri, IarcCStri, and IarcCSstd.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
tau<-1.5

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

n<-10
set.seed(1)
Xp<-runif.tri(n,Tr)$g

166 IarcCStri.alt

IarcCStri(Xp[1,],Xp[2,],Tr,tau,M)

P1<-as.numeric(runif.tri(1,Tr)$g)
P2<-as.numeric(runif.tri(1,Tr)$g)
IarcCStri(P1,P2,Tr,tau,M)

#or try
re<-rel.edges.tri(P1,Tr,M)$re
IarcCStri(P1,P2,Tr,tau,M,re)

End(Not run)

IarcCStri.alt An alternative to the function IarcCStri which yields the indicator for
the presence of an arc from one point to another for Central Similarity
Proximity Catch Digraphs (CS-PCDs)

Description

Returns I(p2 is in NCS(p1, t)) for points p1 and p2, that is, returns 1 if p2 is in NCS(p1, t), returns
0 otherwise, where NCS(x, t) is the CS proximity region for point x with the expansion parameter
t > 0.

CS proximity region is constructed with respect to the triangle tri and edge regions are based on the
center of mass, CM . re is the index of the CM -edge region p resides, with default=NULL but must
be provided as vertices (y1, y2, y3) for re = 3 as rbind(y2,y3,y1) for re = 1 and as rbind(y1,y3,y2)
for re = 2 for triangle T (y1, y2, y3).

If p1 and p2 are distinct and either of them are outside tri, it returns 0, but if they are identical,
then it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

IarcCStri.alt(p1, p2, tri, t, re = NULL)

Arguments

p1 A 2D point whose CS proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the CS proximity
region of p1 or not.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region.

re Index of the CM -edge region containing the point p, either 1,2,3 or NULL,
default=NULL but must be provided (row-wise) as vertices (y1, y2, y3) for re=3
as (y2, y3, y1) for re=1 and as (y1, y3, y2) for re=2 for triangle T (y1, y2, y3).

IarcCStri.alt 167

Value

I(p2 is in NCS(p1, t)) for p1, that is, returns 1 if p2 is in NCS(p1, t), returns 0 otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

IarcAStri, IarcPEtri, IarcCStri, and IarcCSstd.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.6,2);
Tr<-rbind(A,B,C);
t<-1.5

P1<-c(.4,.2)
P2<-c(1.8,.5)
IarcCStri(P1,P2,Tr,t,M=c(1,1,1))
IarcCStri.alt(P1,P2,Tr,t)

IarcCStri(P2,P1,Tr,t,M=c(1,1,1))
IarcCStri.alt(P2,P1,Tr,t)

#or try
re<-rel.edges.triCM(P1,Tr)$re
IarcCStri(P1,P2,Tr,t,M=c(1,1,1),re)
IarcCStri.alt(P1,P2,Tr,t,re)

End(Not run)

168 IarcPEbasic.tri

IarcPEbasic.tri The indicator for the presence of an arc from a point to another for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard
basic triangle case

Description

Returns I(p2 is in NPE(p1, r)) for points p1 and p2 in the standard basic triangle, that is, returns
1 if p2 is in NPE(p1, r), and returns 0 otherwise, where NPE(x, r) is the PE proximity region for
point x with expansion parameter r ≥ 1.

PE proximity region is defined with respect to the standard basic triangle Tb = T ((0, 0), (1, 0), (c1, c2))
where c1 is in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Vertex regions are based on the center, M = (m1,m2) in Cartesian coordinates or M = (α, β, γ)
in barycentric coordinates in the interior of the standard basic triangle Tb or based on circumcenter
of Tb; default is M = (1, 1, 1), i.e., the center of mass of Tb. rv is the index of the vertex region p1
resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside Tb, it returns 0, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence, standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

See also (Ceyhan (2005, 2010); Ceyhan et al. (2006)).

Usage

IarcPEbasic.tri(p1, p2, r, c1, c2, M = c(1, 1, 1), rv = NULL)

Arguments

p1 A 2D point whose PE proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the PE proximity
region of p1 or not.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1

c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; c1 must be in [0, 1/2], c2 > 0 and (1−c1)

2+c22 ≤
1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard basic triangle or circum-
center of Tb which may be entered as "CC" as well; default is M = (1, 1, 1),
i.e., the center of mass of Tb.

rv The index of the vertex region in Tb containing the point, either 1,2,3 or NULL
(default is NULL).

IarcPEbasic.tri 169

Value

I(p2 is in NPE(p1, r)) for points p1 and p2 in the standard basic triangle, that is, returns 1 if p2 is
in NPE(p1, r), and returns 0 otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

IarcPEtri and IarcPEstd.tri

Examples

Not run:
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);

M<-as.numeric(runif.basic.tri(1,c1,c2)$g)

r<-2

P1<-as.numeric(runif.basic.tri(1,c1,c2)$g)
P2<-as.numeric(runif.basic.tri(1,c1,c2)$g)
IarcPEbasic.tri(P1,P2,r,c1,c2,M)

P1<-c(.4,.2)
P2<-c(.5,.26)
IarcPEbasic.tri(P1,P2,r,c1,c2,M)
IarcPEbasic.tri(P2,P1,r,c1,c2,M)

#or try
Rv<-rel.vert.basic.tri(P1,c1,c2,M)$rv
IarcPEbasic.tri(P1,P2,r,c1,c2,M,Rv)

End(Not run)

170 IarcPEend.int

IarcPEend.int The indicator for the presence of an arc from a point to another for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - end inter-
val case

Description

Returns I(p2 ∈ NPE(p1, r)) for points p1 and p2, that is, returns 1 if p2 is in NPE(p1, r), returns 0
otherwise, where NPE(x, r) is the PE proximity region for point x with expansion parameter r ≥ 1
for the region outside the interval (a, b).

rv is the index of the end vertex region p1 resides, with default=NULL, and rv=1 for left end interval
and rv=2 for the right end interval. If p1 and p2 are distinct and either of them are inside interval
int, it returns 0, but if they are identical, then it returns 1 regardless of their locations (i.e., it allows
loops).

See also (Ceyhan (2012)).

Usage

IarcPEend.int(p1, p2, int, r, rv = NULL)

Arguments

p1 A 1D point whose PE proximity region is constructed.

p2 A 1D point. The function determines whether p2 is inside the PE proximity
region of p1 or not.

int A vector of two real numbers representing an interval.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

rv Index of the end interval containing the point, either 1,2 or NULL (default is
NULL).

Value

I(p2 ∈ NPE(p1, r)) for points p1 and p2, that is, returns 1 if p2 is in NPE(p1, r) (i.e., if there is an
arc from p1 to p2), returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

IarcPEint 171

See Also

IarcPEmid.int, IarcCSmid.int, and IarcCSend.int

Examples

a<-0; b<-10; int<-c(a,b)
r<-2

IarcPEend.int(15,17,int,r)
IarcPEend.int(1.5,17,int,r)
IarcPEend.int(-15,17,int,r)

IarcPEint The indicator for the presence of an arc from a point to another for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one inter-
val case

Description

Returns I(p2 ∈ NPE(p1, r, c)) for points p1 and p2, that is, returns 1 if p2 is in NPE(p1, r, c),
returns 0 otherwise, where NPE(x, r, c) is the PE proximity region for point x with expansion
parameter r ≥ 1 and centrality parameter c ∈ (0, 1).

PE proximity region is constructed with respect to the interval (a, b). This function works whether
p1 and p2 are inside or outside the interval int.

Vertex regions for middle intervals are based on the center associated with the centrality parameter
c ∈ (0, 1). If p1 and p2 are identical, then it returns 1 regardless of their locations (i.e., loops are
allowed in the digraph).

See also (Ceyhan (2012)).

Usage

IarcPEint(p1, p2, int, r, c = 0.5)

Arguments

p1 A 1D point for which the proximity region is constructed.

p2 A 1D point for which it is checked whether it resides in the proximity region of
p1 or not.

int A vector of two real numbers representing an interval.

r A positive real number which serves as the expansion parameter in PE proximity
region must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

172 IarcPEmid.int

Value

I(p2 ∈ NPE(p1, r, c)), that is, returns 1 if p2 in NPE(p1, r, c), returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

IarcPEmid.int, IarcPEend.int and IarcCSint

Examples

c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

IarcPEint(7,5,int,r,c)
IarcPEint(15,17,int,r,c)
IarcPEint(1,3,int,r,c)

IarcPEmid.int The indicator for the presence of an arc from a point to another for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - middle in-
terval case

Description

Returns I(p2 ∈ NPE(p1, r, c)) for points p1 and p2, that is, returns 1 if p2 is in NPE(p1, r, c),
returns 0 otherwise, where NPE(x, r, c) is the PE proximity region for point x and is constructed
with expansion parameter r ≥ 1 and centrality parameter c ∈ (0, 1) for the interval (a, b).

PE proximity regions are defined with respect to the middle interval int and vertex regions are based
on the center associated with the centrality parameter c ∈ (0, 1). For the interval, int= (a, b), the
parameterized center is Mc = a + c(b − a). rv is the index of the vertex region p1 resides, with
default=NULL. If p1 and p2 are distinct and either of them are outside interval int, it returns 0, but
if they are identical, then it returns 1 regardless of their locations (i.e., loops are allowed in the
digraph).

See also (Ceyhan (2012, 2016)).

Usage

IarcPEmid.int(p1, x2, int, r, c = 0.5, rv = NULL)

IarcPEmid.int 173

Arguments

p1, x2 1D points; p1 is the point for which the proximity region, NPE(p1, r, c) is con-
structed and p2 is the point which the function is checking whether its inside
NPE(p1, r, c) or not.

int A vector of two real numbers representing an interval.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

rv The index of the vertex region p1 resides, with default=NULL.

Value

I(p2 ∈ NPE(p1, r, c)) for points p1 and p2 that is, returns 1 if p2 is in NPE(p1, r, c), returns 0
otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch Di-
graph Based on Uniform Data.” Metrika, 75(6), 761-793.

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

IarcPEend.int, IarcCSmid.int, and IarcCSend.int

Examples

c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

IarcPEmid.int(7,5,int,r,c)
IarcPEmid.int(1,3,int,r,c)

174 IarcPEset2pnt.std.tri

IarcPEset2pnt.std.tri The indicator for the presence of an arc from a point in set S to the
point p or Proportional Edge Proximity Catch Digraphs (PE-PCDs) -
standard equilateral triangle case

Description

Returns I(p in NPE(x, r) for some x in S) for S, in the standard equilateral triangle, that is, returns
1 if p is in ∪xinSNPE(x, r), and returns 0 otherwise.

PE proximity region is constructed with respect to the standard equilateral triangle Te = T (A,B,C) =
T ((0, 0), (1, 0), (1/2,

√
3/2)) with the expansion parameter r ≥ 1 and vertex regions are based on

center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the
interior of Te; default is M = (1, 1, 1), i.e., the center of mass of Te (which is equivalent to the
circumcenter for Te).

Vertices of Te are also labeled as 1, 2, and 3, respectively. If p is not in S and either p or all points in
S are outside Te, it returns 0, but if p is in S, then it always returns 1 regardless of its location (i.e.,
loops are allowed).

Usage

IarcPEset2pnt.std.tri(S, p, r, M = c(1, 1, 1))

Arguments

S A set of 2D points. Presence of an arc from a point in S to point p is checked by
the function.

p A 2D point. Presence of an arc from a point in S to point p is checked by the
function.

r A positive real number which serves as the expansion parameter in PE proximity
region in the standard equilateral triangle Te = T ((0, 0), (1, 0), (1/2,

√
3/2));

must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle Te;
default is M = (1, 1, 1) i.e., the center of mass of Te.

Value

I(p is in U_x in SNPE(x, r)) for S in the standard equilateral triangle, that is, returns 1 if p is in S or
inside NPE(x, r) for at least one x in S, and returns 0 otherwise. PE proximity region is constructed
with respect to the standard equilateral triangle Te = T (A,B,C) = T ((0, 0), (1, 0), (1/2,

√
3/2))

with M-vertex regions

Author(s)

Elvan Ceyhan

IarcPEset2pnt.tri 175

See Also

IarcPEset2pnt.tri, IarcPEstd.tri, IarcPEtri, and IarcCSset2pnt.std.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

r<-1.5

S<-rbind(Xp[1,],Xp[2,]) #try also S<-c(.5,.5)
IarcPEset2pnt.std.tri(S,Xp[3,],r,M)
IarcPEset2pnt.std.tri(S,Xp[3,],r=1,M)

S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
IarcPEset2pnt.std.tri(S,Xp[3,],r,M)

IarcPEset2pnt.std.tri(S,Xp[6,],r,M)
IarcPEset2pnt.std.tri(S,Xp[6,],r=1.25,M)

P<-c(.4,.2)
S<-Xp[c(1,3,4),]
IarcPEset2pnt.std.tri(Xp,P,r,M)

End(Not run)

IarcPEset2pnt.tri The indicator for the presence of an arc from a point in set S to the
point p for Proportional Edge Proximity Catch Digraphs (PE-PCDs)
- one triangle case

Description

Returns I(p in NPE(x, r) for some x in S), that is, returns 1 if p is in ∪xinSNPE(x, r), and returns
0 otherwise.

PE proximity region is constructed with respect to the triangle tri with the expansion parameter
r ≥ 1 and vertex regions are based on the center, M = (m1,m2) in Cartesian coordinates or M =
(α, β, γ) in barycentric coordinates in the interior of the triangle tri or based on the circumcenter
of tri; default is M = (1, 1, 1), i.e., the center of mass of tri. Vertices of tri are also labeled as
1, 2, and 3, respectively.

176 IarcPEset2pnt.tri

If p is not in S and either p or all points in S are outside tri, it returns 0, but if p is in S, then it
always returns 1 regardless of its location (i.e., loops are allowed).

Usage

IarcPEset2pnt.tri(S, p, tri, r, M = c(1, 1, 1))

Arguments

S A set of 2D points. Presence of an arc from a point in S to point p is checked by
the function.

p A 2D point. Presence of an arc from a point in S to point p is checked by the
function.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region constructed in the triangle tri; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; default is M = (1, 1, 1), i.e., the
center of mass of tri.

Value

I(p is in U_x in S N_PE(x,r)), that is, returns 1 if p is in S or inside NPE(x, r) for at least one x
in S, and returns 0 otherwise, where PE proximity region is constructed with respect to the triangle
tri

Author(s)

Elvan Ceyhan

See Also

IarcPEset2pnt.std.tri, IarcPEtri, IarcPEstd.tri, IarcASset2pnt.tri, and IarcCSset2pnt.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

r<-1.5

S<-rbind(Xp[1,],Xp[2,]) #try also S<-c(1.5,1)

IarcPEstd.tetra 177

IarcPEset2pnt.tri(S,Xp[3,],Tr,r,M)
IarcPEset2pnt.tri(S,Xp[3,],r=1,Tr,M)

S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
IarcPEset2pnt.tri(S,Xp[3,],Tr,r,M)

S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
IarcPEset2pnt.tri(S,Xp[3,],Tr,r,M)

P<-c(.4,.2)
S<-Xp[c(1,3,4),]
IarcPEset2pnt.tri(Xp,P,Tr,r,M)

End(Not run)

IarcPEstd.tetra The indicator for the presence of an arc from a point to another for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard
regular tetrahedron case

Description

Returns I(p2 is in NPE(p1, r)) for points p1 and p2, that is, returns 1 if p2 is in NPE(p1, r), returns
0 otherwise, where NPE(x, r) is the PE proximity region for point x with expansion parameter
r ≥ 1.

PE proximity region is defined with respect to the standard regular tetrahedron Th = T (v = 1, v =
2, v = 3, v = 4) = T ((0, 0, 0), (1, 0, 0), (1/2,

√
3/2, 0), (1/2,

√
3/6,

√
6/3)) and vertex regions

are based on the circumcenter (which is equivalent to the center of mass for standard regular tetra-
hedron) of Th. rv is the index of the vertex region p1 resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside Th, it returns 0, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005, 2010)).

Usage

IarcPEstd.tetra(p1, p2, r, rv = NULL)

Arguments

p1 A 3D point whose PE proximity region is constructed.

p2 A 3D point. The function determines whether p2 is inside the PE proximity
region of p1 or not.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

rv Index of the vertex region containing the point, either 1,2,3,4 (default is NULL).

178 IarcPEstd.tetra

Value

I(p2 is in NPE(p1, r)) for points p1 and p2, that is, returns 1 if p2 is in NPE(p1, r), returns 0
otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

IarcPEtetra, IarcPEtri and IarcPEint

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

n<-3 #try also n<-20
Xp<-runif.std.tetra(n)$g
r<-1.5
IarcPEstd.tetra(Xp[1,],Xp[3,],r)
IarcPEstd.tetra(c(.4,.4,.4),c(.5,.5,.5),r)

#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
IarcPEstd.tetra(Xp[1,],Xp[3,],r,rv=RV)

P1<-c(.1,.1,.1)
P2<-c(.5,.5,.5)
IarcPEstd.tetra(P1,P2,r)

End(Not run)

IarcPEstd.tri 179

IarcPEstd.tri The indicator for the presence of an arc from a point to another for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard
equilateral triangle case

Description

Returns I(p2 is in NPE(p1, r)) for points p1 and p2 in the standard equilateral triangle, that is,
returns 1 if p2 is in NPE(p1, r), and returns 0 otherwise, where NPE(x, r) is the PE proximity
region for point x with expansion parameter r ≥ 1.

PE proximity region is defined with respect to the standard equilateral triangle Te = T (v =
1, v = 2, v = 3) = T ((0, 0), (1, 0), (1/2,

√
3/2)) and vertex regions are based on the center

M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior
of Te; default is M = (1, 1, 1), i.e., the center of mass of Te. rv is the index of the vertex region p1
resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside Te, it returns 0, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

IarcPEstd.tri(p1, p2, r, M = c(1, 1, 1), rv = NULL)

Arguments

p1 A 2D point whose PE proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the PE proximity
region of p1 or not.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle Te;
default is M = (1, 1, 1) i.e. the center of mass of Te.

rv The index of the vertex region in Te containing the point, either 1,2,3 or NULL
(default is NULL).

Value

I(p2 is in NPE(p1, r)) for points p1 and p2 in the standard equilateral triangle, that is, returns 1 if
p2 is in NPE(p1, r), and returns 0 otherwise.

Author(s)

Elvan Ceyhan

180 IarcPEtetra

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

IarcPEtri, IarcPEbasic.tri, and IarcCSstd.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-3

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

IarcPEstd.tri(Xp[1,],Xp[3,],r=1.5,M)
IarcPEstd.tri(Xp[1,],Xp[3,],r=2,M)

#or try
Rv<-rel.vert.std.triCM(Xp[1,])$rv
IarcPEstd.tri(Xp[1,],Xp[3,],r=2,rv=Rv)

P1<-c(.4,.2)
P2<-c(.5,.26)
r<-2
IarcPEstd.tri(P1,P2,r,M)

End(Not run)

IarcPEtetra The indicator for the presence of an arc from one 3D point to another
3D point for Proportional Edge Proximity Catch Digraphs (PE-PCDs)

IarcPEtetra 181

Description

Returns I(p2 is in NPE(p1, r)) for 3D points p1 and p2, that is, returns 1 if p2 is in NPE(p1, r),
returns 0 otherwise, where N_PE(x,r) is the PE proximity region for point x with the expansion
parameter r ≥ 1.

PE proximity region is constructed with respect to the tetrahedron th and vertex regions are based
on the center M which is circumcenter ("CC") or center of mass ("CM") of th with default="CM". rv
is the index of the vertex region p1 resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside th, it returns 0, but if they are identical, then
it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005, 2010)).

Usage

IarcPEtetra(p1, p2, th, r, M = "CM", rv = NULL)

Arguments

p1 A 3D point whose PE proximity region is constructed.

p2 A 3D point. The function determines whether p2 is inside the PE proximity
region of p1 or not.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

rv Index of the M-vertex region containing the point, either 1,2,3,4 (default is
NULL).

Value

I(p2 is in NPE(p1, r)) for p1, that is, returns 1 if p2 is in NPE(p1, r), returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

182 IarcPEtri

See Also

IarcPEstd.tetra, IarcPEtri and IarcPEint

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-3 #try also n<-20

Xp<-runif.tetra(n,tetra)$g

M<-"CM" #try also M<-"CC"
r<-1.5

IarcPEtetra(Xp[1,],Xp[2,],tetra,r) #uses the default M="CM"
IarcPEtetra(Xp[1,],Xp[2,],tetra,r,M)

IarcPEtetra(c(.4,.4,.4),c(.5,.5,.5),tetra,r,M)

#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
IarcPEtetra(Xp[1,],Xp[3,],tetra,r,M,rv=RV)

P1<-c(.1,.1,.1)
P2<-c(.5,.5,.5)
IarcPEtetra(P1,P2,tetra,r,M)

End(Not run)

IarcPEtri The indicator for the presence of an arc from a point to another for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one trian-
gle case

Description

Returns I(p2 is in NPE(p1, r)) for points p1 and p2, that is, returns 1 if p2 is in NPE(p1, r), and
returns 0 otherwise, where NPE(x, r) is the PE proximity region for point x with the expansion
parameter r ≥ 1.

PE proximity region is constructed with respect to the triangle tri and vertex regions are based on
the center, M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in
the interior of tri or based on the circumcenter of tri; default is M = (1, 1, 1), i.e., the center of
mass of tri. rv is the index of the vertex region p1 resides, with default=NULL.

If p1 and p2 are distinct and either of them are outside tri, it returns 0, but if they are identical,
then it returns 1 regardless of their locations (i.e., it allows loops).

See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)).

IarcPEtri 183

Usage

IarcPEtri(p1, p2, tri, r, M = c(1, 1, 1), rv = NULL)

Arguments

p1 A 2D point whose PE proximity region is constructed.

p2 A 2D point. The function determines whether p2 is inside the PE proximity
region of p1 or not.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; default is M = (1, 1, 1), i.e., the
center of mass of tri.

rv Index of the M-vertex region containing the point, either 1,2,3 or NULL (default
is NULL).

Value

I(p2 is in NPE(p1, r)) for points p1 and p2, that is, returns 1 if p2 is in NPE(p1, r), and returns 0
otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

IarcPEbasic.tri, IarcPEstd.tri, IarcAStri, and IarcCStri

184 Idom.num.up.bnd

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0);

r<-1.5

n<-3
set.seed(1)
Xp<-runif.tri(n,Tr)$g

IarcPEtri(Xp[1,],Xp[2,],Tr,r,M)

P1<-as.numeric(runif.tri(1,Tr)$g)
P2<-as.numeric(runif.tri(1,Tr)$g)
IarcPEtri(P1,P2,Tr,r,M)

P1<-c(.4,.2)
P2<-c(1.8,.5)
IarcPEtri(P1,P2,Tr,r,M)
IarcPEtri(P2,P1,Tr,r,M)

M<-c(1.3,1.3)
r<-2

#or try
Rv<-rel.vert.tri(P1,Tr,M)$rv
IarcPEtri(P1,P2,Tr,r,M,Rv)

End(Not run)

Idom.num.up.bnd Indicator for an upper bound for the domination number by the exact
algorithm

Description

Returns 1 if the domination number is less than or equal to the prespecified value k and also the
indices (i.e., row numbers) of a dominating set of size k based on the incidence matrix Inc.Mat
of a graph or a digraph. Here the row number in the incidence matrix corresponds to the index of
the vertex (i.e., index of the data point). The function works whether loops are allowed or not (i.e.,
whether the first diagonal is all 1 or all 0). It takes a rather long time for large number of vertices
(i.e., large number of row numbers).

Usage

Idom.num.up.bnd(Inc.Mat, k)

Idom.num.up.bnd 185

Arguments

Inc.Mat A square matrix consisting of 0’s and 1’s which represents the incidence matrix
of a graph or digraph.

k A positive integer for the upper bound (to be checked) for the domination num-
ber.

Value

A list with two elements

dom.up.bnd The upper bound (to be checked) for the domination number. It is prespecified
as k in the function arguments.

Idom.num.up.bnd

The indicator for the upper bound for domination number of the graph or digraph
being the specified value k or not. It returns 1 if the upper bound is k, and 0
otherwise based on the incidence matrix Inc.Mat of the graph or digraph.

ind.dom.set Indices of the rows in the incidence matrix Inc.Mat that correspond to the ver-
tices in the dominating set of size k if it exists, otherwise it yields NULL.

Author(s)

Elvan Ceyhan

See Also

dom.num.exact and dom.num.greedy

Examples

Not run:
n<-10
M<-matrix(sample(c(0,1),n^2,replace=TRUE),nrow=n)
diag(M)<-1

dom.num.greedy(M)
Idom.num.up.bnd(M,2)

for (k in 1:n)
print(c(k,Idom.num.up.bnd(M,k)))

End(Not run)

186 Idom.num1ASbasic.tri

Idom.num1ASbasic.tri The indicator for a point being a dominating point for Arc Slice Prox-
imity Catch Digraphs (AS-PCDs) - standard basic triangle case

Description

Returns I(p is a dominating point of the AS-PCD) where the vertices of the AS-PCD are the 2D data
set Xp, that is, returns 1 if p is a dominating point of AS-PCD, returns 0 otherwise. AS proximity
regions are defined with respect to the standard basic triangle, Tb, c1 is in [0, 1/2], c2 > 0 and
(1− c1)

2 + c22 ≤ 1.

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

Vertex regions are based on the center M="CC" for circumcenter of Tb; or M = (m1,m2) in Carte-
sian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of Tb; default is M="CC".
Point, p, is in the vertex region of vertex rv (default is NULL); vertices are labeled as 1, 2, 3 in the
order they are stacked row-wise.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num1ASbasic.tri(p, Xp, c1, c2, M = "CC", rv = NULL, ch.data.pnt = FALSE)

Arguments

p A 2D point that is to be tested for being a dominating point or not of the AS-
PCD.

Xp A set of 2D points which constitutes the vertices of the AS-PCD.

c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; c1 must be in [0, 1/2], c2 > 0 and (1−c1)

2+c22 ≤
1.

M The center of the triangle. "CC" stands for circumcenter of the triangle Tb or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle Tb; default is M="CC" i.e.,
the circumcenter of Tb.

rv Index of the vertex whose region contains point p, rv takes the vertex labels as
1, 2, 3 as in the row order of the vertices in Tb.

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

Idom.num1ASbasic.tri 187

Value

I(p is a dominating point of the AS-PCD) where the vertices of the AS-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.num1AStri and Idom.num1PEbasic.tri

Examples

Not run:
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-10

set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)

Idom.num1ASbasic.tri(Xp[1,],Xp,c1,c2,M)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1ASbasic.tri(Xp[i,],Xp,c1,c2,M))}

ind.gam1<-which(gam.vec==1)
ind.gam1

#or try
Rv<-rel.vert.basic.triCC(Xp[1,],c1,c2)$rv
Idom.num1ASbasic.tri(Xp[1,],Xp,c1,c2,M,Rv)

188 Idom.num1ASbasic.tri

Idom.num1ASbasic.tri(c(.2,.4),Xp,c1,c2,M)
Idom.num1ASbasic.tri(c(.2,.4),c(.2,.4),c1,c2,M)

Xp2<-rbind(Xp,c(.2,.4))
Idom.num1ASbasic.tri(Xp[1,],Xp2,c1,c2,M)

CC<-circumcenter.basic.tri(c1,c2) #the circumcenter

if (dimension(M)==3) {M<-bary2cart(M,Tb)}
#need to run this when M is given in barycentric coordinates

if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges.basic.tri(c1,c2,M)
}

Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",xlab="",ylab="",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)

txt<-rbind(Tb,cent,Ds)
xc<-txt[,1]+c(-.03,.03,.02,.06,.06,-0.05,.01)
yc<-txt[,2]+c(.02,.02,.03,.0,.03,.03,-.03)
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)

Idom.num1ASbasic.tri(c(.4,.2),Xp,c1,c2,M)

Idom.num1ASbasic.tri(c(.5,.11),Xp,c1,c2,M)

Idom.num1ASbasic.tri(c(.5,.11),Xp,c1,c2,M,ch.data.pnt=FALSE)
#gives an error message if ch.data.pnt=TRUE since the point is not in the standard basic triangle

End(Not run)

Idom.num1AStri 189

Idom.num1AStri The indicator for a point being a dominating point for Arc Slice Prox-
imity Catch Digraphs (AS-PCDs) - one triangle case

Description

Returns I(p is a dominating point of the AS-PCD whose vertices are the 2D data set Xp), that is,
returns 1 if p is a dominating point of AS-PCD, returns 0 otherwise. Point, p, is in the region of
vertex rv (default is NULL); vertices are labeled as 1, 2, 3 in the order they are stacked row-wise in
tri.

AS proximity regions are defined with respect to the triangle tri and vertex regions are based
on the center M="CC" for circumcenter of tri; or M = (m1,m2) in Cartesian coordinates or
M = (α, β, γ) in barycentric coordinates in the interior of the triangle tri; default is M="CC" the
circumcenter of tri.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num1AStri(p, Xp, tri, M = "CC", rv = NULL, ch.data.pnt = FALSE)

Arguments

p A 2D point that is to be tested for being a dominating point or not of the AS-
PCD.

Xp A set of 2D points which constitutes the vertices of the AS-PCD.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle Tb; default is M="CC" i.e.,
the circumcenter of tri.

rv Index of the vertex whose region contains point p, rv takes the vertex labels as
1, 2, 3 as in the row order of the vertices in tri.

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

Value

I(p is a dominating point of the AS-PCD whose vertices are the 2D data set Xp), that is, returns 1 if
p is a dominating point of the AS-PCD, returns 0 otherwise

190 Idom.num1AStri

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.num1ASbasic.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

Idom.num1AStri(Xp[1,],Xp,Tr,M)
Idom.num1AStri(Xp[1,],Xp[1,],Tr,M)
Idom.num1AStri(c(1.5,1.5),c(1.6,1),Tr,M)
Idom.num1AStri(c(1.6,1),c(1.5,1.5),Tr,M)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1AStri(Xp[i,],Xp,Tr,M))}

ind.gam1<-which(gam.vec==1)
ind.gam1

#or try
Rv<-rel.vert.triCC(Xp[1,],Tr)$rv
Idom.num1AStri(Xp[1,],Xp,Tr,M,Rv)

Idom.num1AStri(c(.2,.4),Xp,Tr,M)
Idom.num1AStri(c(.2,.4),c(.2,.4),Tr,M)

Idom.num1CS.Te.onesixth 191

Xp2<-rbind(Xp,c(.2,.4))
Idom.num1AStri(Xp[1,],Xp2,Tr,M)

if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates

CC<-circumcenter.tri(Tr) #the circumcenter

if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
}

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)

txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)

Idom.num1AStri(c(1.5,1.1),Xp,Tr,M)

Idom.num1AStri(c(1.5,1.1),Xp,Tr,M)

Idom.num1AStri(c(1.5,1.1),Xp,Tr,M,ch.data.pnt=FALSE)
#gives an error message if ch.data.pnt=TRUE since point p is not a data point in Xp

End(Not run)

192 Idom.num1CS.Te.onesixth

Idom.num1CS.Te.onesixth

The indicator for a point being a dominating point for Central Sim-
ilarity Proximity Catch Digraphs (CS-PCDs) - first one-sixth of the
standard equilateral triangle case

Description

Returns I(p is a dominating point of the 2D data set Xp of CS-PCD) in the standard equilateral
triangle Te = T (A,B,C) = T ((0, 0), (1, 0), (1/2,

√
3/2)), that is, returns 1 if p is a dominating

point of CS-PCD, returns 0 otherwise.

Point, p, must lie in the first one-sixth of Te, which is the triangle with vertices T (A,D3, CM) =
T ((0, 0), (1/2, 0), CM).

CS proximity region is constructed with respect to Te with expansion parameter t = 1.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005)).

Usage

Idom.num1CS.Te.onesixth(p, Xp, ch.data.pnt = FALSE)

Arguments

p A 2D point that is to be tested for being a dominating point or not of the CS-
PCD.

Xp A set of 2D points which constitutes the vertices of the CS-PCD.

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

Value

I(p is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Idom.num1CSint 193

See Also

Idom.num1CSstd.tri and Idom.num1CSt1std.tri

Idom.num1CSint The indicator for a point being a dominating point for Central Simi-
larity Proximity Catch Digraphs (CS-PCDs) for an interval

Description

Returns I(p is a dominating point of CS-PCD) where the vertices of the CS-PCD are the 1D data
set Xp).

CS proximity region is defined with respect to the interval int with an expansion parameter, t > 0,
and a centrality parameter, c ∈ (0, 1), so arcs may exist for Xp points inside the interval int= (a, b).

Vertex regions are based on the center associated with the centrality parameter c ∈ (0, 1). rv is the
index of the vertex region p resides, with default=NULL.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

Usage

Idom.num1CSint(p, Xp, int, t, c = 0.5, rv = NULL, ch.data.pnt = FALSE)

Arguments

p A 1D point that is to be tested for being a dominating point or not of the CS-
PCD.

Xp A set of 1D points which constitutes the vertices of the CS-PCD.

int A vector of two real numbers representing an interval.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

rv Index of the vertex region in which the point resides, either 1,2 or NULL (default
is NULL).

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

Value

I(p is a dominating point of CS-PCD) where the vertices of the CS-PCD are the 1D data set Xp),
that is, returns 1 if p is a dominating point, returns 0 otherwise

194 Idom.num1CSint

Author(s)

Elvan Ceyhan

See Also

Idom.num1PEint

Examples

t<-2
c<-.4
a<-0; b<-10; int<-c(a,b)

Mc<-centerMc(int,c)
n<-10

set.seed(1)
Xp<-runif(n,a,b)

Idom.num1CSint(Xp[5],Xp,int,t,c)

Idom.num1CSint(2,Xp,int,t,c,ch.data.pnt = FALSE)
#gives an error if ch.data.pnt = TRUE since p is not a data point in Xp

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1CSint(Xp[i],Xp,int,t,c))}

ind.gam1<-which(gam.vec==1)
ind.gam1

domset<-Xp[ind.gam1]
if (length(ind.gam1)==0)
{domset<-NA}

#or try
Rv<-rel.vert.mid.int(Xp[5],int,c)$rv
Idom.num1CSint(Xp[5],Xp,int,t,c,Rv)

Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]

plot(cbind(a,0),xlab="",pch=".",xlim=Xlim+xd*c(-.05,.05))
abline(h=0)
abline(v=c(a,b,Mc),col=c(1,1,2),lty=2)
points(cbind(Xp,0))
points(cbind(domset,0),pch=4,col=2)
text(cbind(c(a,b,Mc),-0.1),c("a","b","Mc"))

Idom.num1CSint(Xp[5],Xp,int,t,c)

n<-10

Idom.num1CSstd.tri 195

Xp2<-runif(n,a+b,b+10)
Idom.num1CSint(5,Xp2,int,t,c)

Idom.num1CSstd.tri The indicator for a point being a dominating point for Central Sim-
ilarity Proximity Catch Digraphs (CS-PCDs) - standard equilateral
triangle case

Description

Returns I(p is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2D
data set Xp in the standard equilateral triangle Te = T (A,B,C) = T ((0, 0), (1, 0), (1/2,

√
3/2)),

that is, returns 1 if p is a dominating point of CS-PCD, returns 0 otherwise.

CS proximity region is constructed with respect to Te with expansion parameter t > 0 and edge
regions are based on center of mass CM = (1/2,

√
3/6).

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num1CSstd.tri(p, Xp, t, ch.data.pnt = FALSE)

Arguments

p A 2D point that is to be tested for being a dominating point or not of the CS-
PCD.

Xp A set of 2D points which constitutes the vertices of the CS-PCD.

t A positive real number which serves as the expansion parameter in CS proximity
region.

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

Value

I(p is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise

Author(s)

Elvan Ceyhan

196 Idom.num1CSstd.tri

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.num1CSt1std.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
Te<-rbind(A,B,C);
t<-1.5
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num1CSstd.tri(Xp[3,],Xp,t)
Idom.num1CSstd.tri(c(1,2),c(1,2),t)
Idom.num1CSstd.tri(c(1,2),c(1,2),t,ch.data.pnt = TRUE)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1CSstd.tri(Xp[i,],Xp,t))}

ind.gam1<-which(gam.vec==1)
ind.gam1

Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Te,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp)
L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE);
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)
#rbind is to insert the points correctly if there is only one dominating point

Idom.num1CSt1std.tri 197

txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.02,.02,.01,.05)
yc<-txt[,2]+c(.02,.02,.03,.02)
txt.str<-c("A","B","C","CM")
text(xc,yc,txt.str)

Idom.num1CSstd.tri(c(1,2),Xp,t,ch.data.pnt = FALSE)
#gives an error if ch.data.pnt = TRUE message since p is not a data point

End(Not run)

Idom.num1CSt1std.tri The indicator for a point being a dominating point for Central Sim-
ilarity Proximity Catch Digraphs (CS-PCDs) - standard equilateral
triangle case with t = 1

Description

Returns I(p is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2D
data set Xp in the standard equilateral triangle Te = T (A,B,C) = T ((0, 0), (1, 0), (1/2,

√
3/2)),

that is, returns 1 if p is a dominating point of CS-PCD, returns 0 otherwise.

Point, p, is in the edge region of edge re (default is NULL); vertices are labeled as 1, 2, 3 in the order
they are stacked row-wise in Te, and the opposite edges are labeled with label of the vertices (that
is, edge numbering is 1,2, and 3 for edges AB, BC, and AC).

CS proximity region is constructed with respect to Te with expansion parameter t = 1 and edge
regions are based on center of mass CM = (1/2,

√
3/6).

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num1CSt1std.tri(p, Xp, re = NULL, ch.data.pnt = FALSE)

Arguments

p A 2D point that is to be tested for being a dominating point or not of the CS-
PCD.

Xp A set of 2D points which constitutes the vertices of the CS-PCD.

re The index of the edge region in Te containing the point, either 1,2,3 or NULL
(default is NULL).

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

198 Idom.num1CSt1std.tri

Value

I(p is a dominating point of the CS-PCD) where the vertices of the CS-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.num1CSstd.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
CM<-(A+B+C)/3
Te<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

Idom.num1CSt1std.tri(Xp[3,],Xp)

Idom.num1CSt1std.tri(c(1,2),c(1,2))
Idom.num1CSt1std.tri(c(1,2),c(1,2),ch.data.pnt = TRUE)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1CSt1std.tri(Xp[i,],Xp))}

ind.gam1<-which(gam.vec==1)
ind.gam1

Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]

Idom.num1PEbasic.tri 199

yd<-Ylim[2]-Ylim[1]

plot(Te,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp)
L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE);
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)
#rbind is to insert the points correctly if there is only one dominating point

txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.02,.02,.01,.05)
yc<-txt[,2]+c(.02,.02,.03,.02)
txt.str<-c("A","B","C","CM")
text(xc,yc,txt.str)

End(Not run)

Idom.num1PEbasic.tri The indicator for a point being a dominating point or not for Propor-
tional Edge Proximity Catch Digraphs (PE-PCDs) - standard basic
triangle case

Description

Returns I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D
data set Xp for data in the standard basic triangle Tb = T ((0, 0), (1, 0), (c1, c2)), that is, returns 1 if
p is a dominating point of PE-PCD, and returns 0 otherwise.

PE proximity regions are defined with respect to the standard basic triangle Tb. In the standard basic
triangle, Tb, c1 is in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence, standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

Vertex regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in
barycentric coordinates in the interior of a standard basic triangle to the edges on the extension of
the lines joining M to the vertices or based on the circumcenter of Tb; default is M = (1, 1, 1), i.e.,
the center of mass of Tb. Point, p, is in the vertex region of vertex rv (default is NULL); vertices are
labeled as 1, 2, 3 in the order they are stacked row-wise.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2011)).

200 Idom.num1PEbasic.tri

Usage

Idom.num1PEbasic.tri(
p,
Xp,
r,
c1,
c2,
M = c(1, 1, 1),
rv = NULL,
ch.data.pnt = FALSE

)

Arguments

p A 2D point that is to be tested for being a dominating point or not of the PE-
PCD.

Xp A set of 2D points which constitutes the vertices of the PE-PCD.
r A positive real number which serves as the expansion parameter in PE proximity

region; must be ≥ 1.
c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle

adjacent to the shorter edges; c1 must be in [0, 1/2], c2 > 0 and (1−c1)
2+c22 ≤

1.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates

which serves as a center in the interior of the standard basic triangle Tb or the
circumcenter of Tb which may be entered as "CC" as well; default is M =
(1, 1, 1), i.e., the center of mass of Tb.

rv Index of the vertex whose region contains point p, rv takes the vertex labels as
1, 2, 3 as in the row order of the vertices in Tb.

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

Value

I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, and returns 0 otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Idom.num1PEbasic.tri 201

See Also

Idom.num1ASbasic.tri and Idom.num1AStri

Examples

Not run:
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.3)
r<-2

P<-c(.4,.2)
Idom.num1PEbasic.tri(P,Xp,r,c1,c2,M)
Idom.num1PEbasic.tri(Xp[1,],Xp,r,c1,c2,M)

Idom.num1PEbasic.tri(c(1,1),Xp,r,c1,c2,M,ch.data.pnt = FALSE)
#gives an error message if ch.data.pnt = TRUE since point p=c(1,1) is not a data point in Xp

#or try
Rv<-rel.vert.basic.tri(Xp[1,],c1,c2,M)$rv
Idom.num1PEbasic.tri(Xp[1,],Xp,r,c1,c2,M,Rv)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEbasic.tri(Xp[i,],Xp,r,c1,c2,M))}

ind.gam1<-which(gam.vec==1)
ind.gam1

Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

if (dimension(M)==3) {M<-bary2cart(M,Tb)}
#need to run this when M is given in barycentric coordinates

if (identical(M,circumcenter.tri(Tb)))
{

plot(Tb,pch=".",asp=1,xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(Xp,pch=1,col=1)
Ds<-rbind((B+C)/2,(A+C)/2,(A+B)/2)

} else
{plot(Tb,pch=".",xlab="",ylab="",axes=TRUE,

202 Idom.num1PEint

xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(Xp,pch=1,col=1)
Ds<-prj.cent2edges.basic.tri(c1,c2,M)}

L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)

txt<-rbind(Tb,M,Ds)
xc<-txt[,1]+c(-.02,.02,.02,-.02,.03,-.03,.01)
yc<-txt[,2]+c(.02,.02,.02,-.02,.02,.02,-.03)
txt.str<-c("A","B","C","M","D1","D2","D3")
text(xc,yc,txt.str)

Idom.num1PEbasic.tri(c(.2,.1),Xp,r,c1,c2,M,ch.data.pnt=FALSE)
#gives an error message if ch.data.pnt=TRUE since point p is not a data point in Xp

End(Not run)

Idom.num1PEint The indicator for a point being a dominating point for Proportional
Edge Proximity Catch Digraphs (PE-PCDs) for an interval

Description

Returns I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 1D
data set Xp.

PE proximity region is defined with respect to the interval int with an expansion parameter, r ≥ 1,
and a centrality parameter, c ∈ (0, 1), so arcs may exist for Xp points inside the interval int= (a, b).

Vertex regions are based on the center associated with the centrality parameter c ∈ (0, 1). rv is the
index of the vertex region p resides, with default=NULL.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

Usage

Idom.num1PEint(p, Xp, int, r, c = 0.5, rv = NULL, ch.data.pnt = FALSE)

Arguments

p A 1D point that is to be tested for being a dominating point or not of the PE-
PCD.

Xp A set of 1D points which constitutes the vertices of the PE-PCD.

int A vector of two real numbers representing an interval.

Idom.num1PEint 203

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b).
For the interval, int= (a, b), the parameterized center is Mc = a + c(b − a);
default c=.5.

rv Index of the vertex region in which the point resides, either 1,2 or NULL (default
is NULL).

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

Value

I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 1D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise

Author(s)

Elvan Ceyhan

See Also

Idom.num1PEtri

Examples

Not run:
r<-2
c<-.4
a<-0; b<-10
int=c(a,b)

Mc<-centerMc(int,c)

n<-10

set.seed(1)
Xp<-runif(n,a,b)

Idom.num1PEint(Xp[5],Xp,int,r,c)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEint(Xp[i],Xp,int,r,c))}

ind.gam1<-which(gam.vec==1)
ind.gam1

domset<-Xp[ind.gam1]
if (length(ind.gam1)==0)
{domset<-NA}

204 Idom.num1PEstd.tetra

#or try
Rv<-rel.vert.mid.int(Xp[5],int,c)$rv
Idom.num1PEint(Xp[5],Xp,int,r,c,Rv)

Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]

plot(cbind(a,0),xlab="",pch=".",xlim=Xlim+xd*c(-.05,.05))
abline(h=0)
points(cbind(Xp,0))
abline(v=c(a,b,Mc),col=c(1,1,2),lty=2)
points(cbind(domset,0),pch=4,col=2)
text(cbind(c(a,b,Mc),-0.1),c("a","b","Mc"))

Idom.num1PEint(2,Xp,int,r,c,ch.data.pnt = FALSE)
#gives an error message if ch.data.pnt = TRUE since point p is not a data point in Xp

End(Not run)

Idom.num1PEstd.tetra The indicator for a 3D point being a dominating point for Propor-
tional Edge Proximity Catch Digraphs (PE-PCDs) - standard regular
tetrahedron case

Description

Returns I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 3D data
set Xp in the standard regular tetrahedron Th = T ((0, 0, 0), (1, 0, 0), (1/2,

√
3/2, 0), (1/2,

√
3/6,

√
6/3)),

that is, returns 1 if p is a dominating point of PE-PCD, returns 0 otherwise.

Point, p, is in the vertex region of vertex rv (default is NULL); vertices are labeled as 1,2,3,4 in the
order they are stacked row-wise in Th.

PE proximity region is constructed with respect to the tetrahedron Th with expansion parameter
r ≥ 1 and vertex regions are based on center of mass CM (equivalent to circumcenter in this case).

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num1PEstd.tetra(p, Xp, r, rv = NULL, ch.data.pnt = FALSE)

Arguments

p A 3D point that is to be tested for being a dominating point or not of the PE-
PCD.

Idom.num1PEstd.tetra 205

Xp A set of 3D points which constitutes the vertices of the PE-PCD.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

rv Index of the vertex whose region contains point p, rv takes the vertex labels
as 1,2,3,4 as in the row order of the vertices in standard regular tetrahedron,
default is NULL.

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

Value

I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 3D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

Idom.num1PEtetra, Idom.num1PEtri and Idom.num1PEbasic.tri

Examples

Not run:
set.seed(123)
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

n<-5 #try also n<-20
Xp<-runif.std.tetra(n)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))
r<-1.5

P<-c(.4,.1,.2)
Idom.num1PEstd.tetra(Xp[1,],Xp,r)
Idom.num1PEstd.tetra(P,Xp,r)

Idom.num1PEstd.tetra(Xp[1,],Xp,r)
Idom.num1PEstd.tetra(Xp[1,],Xp[1,],r)

#or try

206 Idom.num1PEtetra

RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
Idom.num1PEstd.tetra(Xp[1,],Xp,r,rv=RV)

Idom.num1PEstd.tetra(c(-1,-1,-1),Xp,r)
Idom.num1PEstd.tetra(c(-1,-1,-1),c(-1,-1,-1),r)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEstd.tetra(Xp[i,],Xp,r))}

ind.gam1<-which(gam.vec==1)
ind.gam1
g1.pts<-Xp[ind.gam1,]

Xlim<-range(tetra[,1],Xp[,1])
Ylim<-range(tetra[,2],Xp[,2])
Zlim<-range(tetra[,3],Xp[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3], phi =0,theta=40, bty = "g",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),

pch = 20, cex = 1, ticktype = "detailed")
#add the vertices of the tetrahedron
plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)
if (length(g1.pts)!=0)
{

if (length(g1.pts)==3) g1.pts<-matrix(g1.pts,nrow=1)
plot3D::points3D(g1.pts[,1],g1.pts[,2],g1.pts[,3], pch=4,col="red", add=TRUE)}

plot3D::text3D(tetra[,1],tetra[,2],tetra[,3], labels=c("A","B","C","D"), add=TRUE)

CM<-apply(tetra,2,mean)
D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CM,6),ncol=3,byrow=TRUE)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lty=2)

P<-c(.4,.1,.2)
Idom.num1PEstd.tetra(P,Xp,r)

Idom.num1PEstd.tetra(c(-1,-1,-1),Xp,r,ch.data.pnt = FALSE)
#gives an error message if ch.data.pnt = TRUE

End(Not run)

Idom.num1PEtetra 207

Idom.num1PEtetra The indicator for a 3D point being a dominating point for Proportional
Edge Proximity Catch Digraphs (PE-PCDs) - one tetrahedron case

Description

Returns I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D
data set Xp in the tetrahedron th, that is, returns 1 if p is a dominating point of PE-PCD, returns 0
otherwise.

Point, p, is in the vertex region of vertex rv (default is NULL); vertices are labeled as 1,2,3,4 in the
order they are stacked row-wise in th.

PE proximity region is constructed with respect to the tetrahedron th with expansion parameter
r ≥ 1 and vertex regions are based on center of mass (M="CM") or circumcenter (M="CC") only. and
vertex regions are based on center of mass CM (equivalent to circumcenter in this case).

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num1PEtetra(p, Xp, th, r, M = "CM", rv = NULL, ch.data.pnt = FALSE)

Arguments

p A 3D point that is to be tested for being a dominating point or not of the PE-
PCD.

Xp A set of 3D points which constitutes the vertices of the PE-PCD.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

rv Index of the vertex whose region contains point p, rv takes the vertex labels as
1,2,3,4 as in the row order of the vertices in standard tetrahedron, default is
NULL.

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

Value

I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, returns 0 otherwise

208 Idom.num1PEtetra

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

Idom.num1PEstd.tetra, Idom.num1PEtri and Idom.num1PEbasic.tri

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-5 #try also n<-20

Xp<-runif.tetra(n,tetra)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))

M<-"CM"; cent<-apply(tetra,2,mean) #center of mass
#try also M<-"CC"; cent<-circumcenter.tetra(tetra) #circumcenter

r<-2

P<-c(.4,.1,.2)
Idom.num1PEtetra(Xp[1,],Xp,tetra,r,M)
Idom.num1PEtetra(P,Xp,tetra,r,M)

#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
Idom.num1PEtetra(Xp[1,],Xp,tetra,r,M,rv=RV)

Idom.num1PEtetra(c(-1,-1,-1),Xp,tetra,r,M)
Idom.num1PEtetra(c(-1,-1,-1),c(-1,-1,-1),tetra,r,M)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEtetra(Xp[i,],Xp,tetra,r,M))}

ind.gam1<-which(gam.vec==1)
ind.gam1
g1.pts<-Xp[ind.gam1,]

Xlim<-range(tetra[,1],Xp[,1],cent[1])
Ylim<-range(tetra[,2],Xp[,2],cent[2])

Idom.num1PEtri 209

Zlim<-range(tetra[,3],Xp[,3],cent[3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3], phi =0,theta=40, bty = "g",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),

pch = 20, cex = 1, ticktype = "detailed")
#add the vertices of the tetrahedron
plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)
if (length(g1.pts)!=0)
{plot3D::points3D(g1.pts[,1],g1.pts[,2],g1.pts[,3], pch=4,col="red", add=TRUE)}

plot3D::text3D(tetra[,1],tetra[,2],tetra[,3], labels=c("A","B","C","D"), add=TRUE)

D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-rbind(cent,cent,cent,cent,cent,cent)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lty=2)

P<-c(.4,.1,.2)
Idom.num1PEtetra(P,Xp,tetra,r,M)

Idom.num1PEtetra(c(-1,-1,-1),Xp,tetra,r,M,ch.data.pnt = FALSE)
#gives an error message if ch.data.pnt = TRUE since p is not a data point

End(Not run)

Idom.num1PEtri The indicator for a point being a dominating point for Proportional
Edge Proximity Catch Digraphs (PE-PCDs) - one triangle case

Description

Returns I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D
data set Xp in the triangle tri, that is, returns 1 if p is a dominating point of PE-PCD, and returns 0
otherwise.

Point, p, is in the vertex region of vertex rv (default is NULL); vertices are labeled as 1, 2, 3 in the
order they are stacked row-wise in tri.

PE proximity region is constructed with respect to the triangle tri with expansion parameter r ≥ 1
and vertex regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ)
in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri;
default is M = (1, 1, 1), i.e., the center of mass of tri.

ch.data.pnt is for checking whether point p is a data point in Xp or not (default is FALSE), so by
default this function checks whether the point p would be a dominating point if it actually were in
the data set.

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).

210 Idom.num1PEtri

Usage

Idom.num1PEtri(p, Xp, tri, r, M = c(1, 1, 1), rv = NULL, ch.data.pnt = FALSE)

Arguments

p A 2D point that is to be tested for being a dominating point or not of the PE-
PCD.

Xp A set of 2D points which constitutes the vertices of the PE-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; default is M = (1, 1, 1), i.e., the
center of mass of tri.

rv Index of the vertex whose region contains point p, rv takes the vertex labels as
1, 2, 3 as in the row order of the vertices in tri.

ch.data.pnt A logical argument for checking whether point p is a data point in Xp or not
(default is FALSE).

Value

I(p is a dominating point of the PE-PCD) where the vertices of the PE-PCD are the 2D data set Xp,
that is, returns 1 if p is a dominating point, and returns 0 otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

See Also

Idom.num1PEbasic.tri and Idom.num1AStri

Idom.num1PEtri 211

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

r<-1.5 #try also r<-2

Idom.num1PEtri(Xp[1,],Xp,Tr,r,M)
Idom.num1PEtri(c(1,2),c(1,2),Tr,r,M)
Idom.num1PEtri(c(1,2),c(1,2),Tr,r,M,ch.data.pnt = TRUE)

gam.vec<-vector()
for (i in 1:n)
{gam.vec<-c(gam.vec,Idom.num1PEtri(Xp[i,],Xp,Tr,r,M))}

ind.gam1<-which(gam.vec==1)
ind.gam1

#or try
Rv<-rel.vert.tri(Xp[1,],Tr,M)$rv
Idom.num1PEtri(Xp[1,],Xp,Tr,r,M,Rv)

Ds<-prj.cent2edges(Tr,M)

if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates

Xlim<-range(Tr[,1],Xp[,1],M[1])
Ylim<-range(Tr[,2],Xp[,2],M[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,pch=".",xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=1,col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(rbind(Xp[ind.gam1,]),pch=4,col=2)
#rbind is to insert the points correctly if there is only one dominating point

txt<-rbind(Tr,M,Ds)
xc<-txt[,1]+c(-.02,.03,.02,-.02,.04,-.03,.0)
yc<-txt[,2]+c(.02,.02,.05,-.03,.04,.06,-.07)
txt.str<-c("A","B","C","M","D1","D2","D3")
text(xc,yc,txt.str)

212 Idom.num2ASbasic.tri

P<-c(1.4,1)
Idom.num1PEtri(P,P,Tr,r,M)
Idom.num1PEtri(Xp[1,],Xp,Tr,r,M)

Idom.num1PEtri(c(1,2),Xp,Tr,r,M,ch.data.pnt = FALSE)
#gives an error message if ch.data.pnt = TRUE since p is not a data point

End(Not run)

Idom.num2ASbasic.tri The indicator for two points being a dominating set for Arc Slice Prox-
imity Catch Digraphs (AS-PCDs) - standard basic triangle case

Description

Returns I({p1,p2} is a dominating set of AS-PCD) where vertices of AS-PCD are the 2D data set
Xp), that is, returns 1 if {p1,p2} is a dominating set of AS-PCD, returns 0 otherwise.

AS proximity regions are defined with respect to the standard basic triangle Tb = T (c(0, 0), c(1, 0), c(c1, c2)),
In the standard basic triangle, Tb, c1 is in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

Point, p1, is in the vertex region of vertex rv1 (default is NULL) and point, p2, is in the vertex region
of vertex rv2 (default is NULL); vertices are labeled as 1, 2, 3 in the order they are stacked row-wise.

Vertex regions are based on the center M="CC" for circumcenter of Tb; or M = (m1,m2) in Carte-
sian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of Tb; default is M="CC".

ch.data.pnts is for checking whether points p1 and p2 are data points in Xp or not (default is
FALSE), so by default this function checks whether the points p1 and p2 would be a dominating set
if they actually were in the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num2ASbasic.tri(
p1,
p2,
Xp,
c1,
c2,
M = "CC",
rv1 = NULL,
rv2 = NULL,
ch.data.pnts = FALSE

)

Idom.num2ASbasic.tri 213

Arguments

p1, p2 Two 2D points to be tested for constituting a dominating set of the AS-PCD.

Xp A set of 2D points which constitutes the vertices of the AS-PCD.

c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle
adjacent to the shorter edges; c1 must be in [0, 1/2], c2 > 0 and (1−c1)

2+c22 ≤
1.

M The center of the triangle. "CC" stands for circumcenter of the triangle Tb or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle Tb; default is M="CC" i.e.,
the circumcenter of Tb.

rv1, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They
take the vertex labels as 1, 2, 3 as in the row order of the vertices in Tb (default
is NULL for both).

ch.data.pnts A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

Value

I({p1,p2} is a dominating set of the AS-PCD) where the vertices of AS-PCD are the 2D data set
Xp), that is, returns 1 if {p1,p2} is a dominating set of AS-PCD, returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.num2AStri

Examples

Not run:
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)

214 Idom.num2AStri

n<-10

set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)

Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp,c1,c2,M)
Idom.num2ASbasic.tri(Xp[1,],Xp[1,],Xp,c1,c2,M) #one point can not a dominating set of size two

Idom.num2ASbasic.tri(c(.2,.4),c(.2,.5),rbind(c(.2,.4),c(.2,.5)),c1,c2,M)

ind.gam2<-vector()
for (i in 1:(n-1))

for (j in (i+1):n)
{if (Idom.num2ASbasic.tri(Xp[i,],Xp[j,],Xp,c1,c2,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}

ind.gam2

#or try
rv1<-rel.vert.basic.triCC(Xp[1,],c1,c2)$rv
rv2<-rel.vert.basic.triCC(Xp[2,],c1,c2)$rv
Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp,c1,c2,M,rv1,rv2)
Idom.num2ASbasic.tri(c(.2,.4),Xp[2,],Xp,c1,c2,M,rv1,rv2)

#or try
rv1<-rel.vert.basic.triCC(Xp[1,],c1,c2)$rv
Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp,c1,c2,M,rv1)

#or try
Rv2<-rel.vert.basic.triCC(Xp[2,],c1,c2)$rv
Idom.num2ASbasic.tri(Xp[1,],Xp[2,],Xp,c1,c2,M,rv2=Rv2)

Idom.num2ASbasic.tri(c(.3,.2),c(.35,.25),Xp,c1,c2,M)

End(Not run)

Idom.num2AStri The indicator for two points constituting a dominating set for Arc Slice
Proximity Catch Digraphs (AS-PCDs) - one triangle case

Description

Returns I({p1,p2} is a dominating set of the AS-PCD) where vertices of the AS-PCD are the 2D
data set Xp), that is, returns 1 if {p1,p2} is a dominating set of AS-PCD, returns 0 otherwise.

AS proximity regions are defined with respect to the triangle tri. Point, p1, is in the region of
vertex rv1 (default is NULL) and point, p2, is in the region of vertex rv2 (default is NULL); vertices
(and hence rv1 and rv2) are labeled as 1, 2, 3 in the order they are stacked row-wise in tri.

Idom.num2AStri 215

Vertex regions are based on the center M="CC" for circumcenter of tri; or M = (m1,m2) in
Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of the triangle
tri; default is M="CC" the circumcenter of tri.

ch.data.pnts is for checking whether points p1 and p2 are data points in Xp or not (default is
FALSE), so by default this function checks whether the points p1 and p2 would constitute dominating
set if they actually were in the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num2AStri(
p1,
p2,
Xp,
tri,
M = "CC",
rv1 = NULL,
rv2 = NULL,
ch.data.pnts = FALSE

)

Arguments

p1, p2 Two 2D points to be tested for constituting a dominating set of the AS-PCD.

Xp A set of 2D points which constitutes the vertices of the AS-PCD.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle Tb; default is M="CC" i.e.,
the circumcenter of tri.

rv1, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They
take the vertex labels as 1, 2, 3 as in the row order of the vertices in tri (default
is NULL for both).

ch.data.pnts A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

Value

I({p1,p2} is a dominating set of the AS-PCD) where vertices of the AS-PCD are the 2D data set
Xp), that is, returns 1 if {p1,p2} is a dominating set of AS-PCD, returns 0 otherwise

Author(s)

Elvan Ceyhan

216 Idom.num2AStri

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.num2ASbasic.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

Idom.num2AStri(Xp[1,],Xp[2,],Xp,Tr,M)
Idom.num2AStri(Xp[1,],Xp[1,],Xp,Tr,M) #same two points cannot be a dominating set of size 2

Idom.num2AStri(c(.2,.4),Xp[2,],Xp,Tr,M)
Idom.num2AStri(c(.2,.4),c(.2,.5),Xp,Tr,M)
Idom.num2AStri(c(.2,.4),c(.2,.5),rbind(c(.2,.4),c(.2,.5)),Tr,M)

#or try
rv1<-rel.vert.triCC(c(.2,.4),Tr)$rv
rv2<-rel.vert.triCC(c(.2,.5),Tr)$rv
Idom.num2AStri(c(.2,.4),c(.2,.5),rbind(c(.2,.4),c(.2,.5)),Tr,M,rv1,rv2)

ind.gam2<-vector()
for (i in 1:(n-1))

for (j in (i+1):n)
{if (Idom.num2AStri(Xp[i,],Xp[j,],Xp,Tr,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}

ind.gam2

#or try
rv1<-rel.vert.triCC(Xp[1,],Tr)$rv
rv2<-rel.vert.triCC(Xp[2,],Tr)$rv
Idom.num2AStri(Xp[1,],Xp[2,],Xp,Tr,M,rv1,rv2)

Idom.num2CS.Te.onesixth 217

#or try
rv1<-rel.vert.triCC(Xp[1,],Tr)$rv
Idom.num2AStri(Xp[1,],Xp[2,],Xp,Tr,M,rv1)

#or try
Rv2<-rel.vert.triCC(Xp[2,],Tr)$rv
Idom.num2AStri(Xp[1,],Xp[2,],Xp,Tr,M,rv2=Rv2)

Idom.num2AStri(c(1.3,1.2),c(1.35,1.25),Xp,Tr,M)

End(Not run)

Idom.num2CS.Te.onesixth

The indicator for two points constituting a dominating set for Central
Similarity Proximity Catch Digraphs (CS-PCDs) - first one-sixth of the
standard equilateral triangle case

Description

Returns I({p1,p2} is a dominating set of the CS-PCD) where the vertices of the CS-PCD are the
2D data set Xp), that is, returns 1 if p is a dominating point of CS-PCD, returns 0 otherwise.

CS proximity region is constructed with respect to the standard equilateral triangle Te = T (A,B,C) =
T ((0, 0), (1, 0), (1/2,

√
3/2)) and with expansion parameter t = 1. Point, p1, must lie in the first

one-sixth of Te, which is the triangle with vertices T (A,D3, CM) = T ((0, 0), (1/2, 0), CM).

ch.data.pnts is for checking whether points p1 and p2 are data points in Xp or not (default is
FALSE), so by default this function checks whether the points p1 and p2 would be a dominating set
if they actually were in the data set.

See also (Ceyhan (2005)).

Usage

Idom.num2CS.Te.onesixth(p1, p2, Xp, ch.data.pnts = FALSE)

Arguments

p1, p2 Two 2D points to be tested for constituting a dominating set of the CS-PCD.

Xp A set of 2D points which constitutes the vertices of the CS-PCD.

ch.data.pnts A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

Value

I({p1,p2} is a dominating set of the CS-PCD) where the vertices of the CS-PCD are the 2D data
set Xp), that is, returns 1 if {p1,p2} is a dominating set of CS-PCD, returns 0 otherwise

218 Idom.num2PEbasic.tri

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

See Also

Idom.num2CSstd.tri

Idom.num2PEbasic.tri The indicator for two points being a dominating set for Proportional
Edge Proximity Catch Digraphs (PE-PCDs) - standard basic triangle
case

Description

Returns I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the
2D data set Xp in the standard basic triangle Tb = T ((0, 0), (1, 0), (c1, c2)), that is, returns 1 if
{p1,p2} is a dominating set of PE-PCD, and returns 0 otherwise.

PE proximity regions are defined with respect to Tb. In the standard basic triangle, Tb, c1 is in
[0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence, standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

Vertex regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in
barycentric coordinates in the interior of a standard basic triangle Tb; default is M = (1, 1, 1), i.e.,
the center of mass of Tb. Point, p1, is in the vertex region of vertex rv1 (default is NULL); and point,
p2, is in the vertex region of vertex rv2 (default is NULL); vertices are labeled as 1, 2, 3 in the order
they are stacked row-wise.

ch.data.pnts is for checking whether points p1 and p2 are both data points in Xp or not (de-
fault is FALSE), so by default this function checks whether the points p1 and p2 would constitute a
dominating set if they both were actually in the data set.

See also (Ceyhan (2005, 2011)).

Usage

Idom.num2PEbasic.tri(
p1,
p2,
Xp,

Idom.num2PEbasic.tri 219

r,
c1,
c2,
M = c(1, 1, 1),
rv1 = NULL,
rv2 = NULL,
ch.data.pnts = FALSE

)

Arguments

p1, p2 Two 2D points to be tested for constituting a dominating set of the PE-PCD.
Xp A set of 2D points which constitutes the vertices of the PE-PCD.
r A positive real number which serves as the expansion parameter in PE proximity

region; must be ≥ 1.
c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle.

adjacent to the shorter edges; c1 must be in [0, 1/2], c2 > 0 and (1−c1)
2+c22 ≤

1.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates

which serves as a center in the interior of the standard basic triangle Tb or the
circumcenter of Tb which may be entered as "CC" as well; default is M =
(1, 1, 1), i.e., the center of mass of Tb.

rv1, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They
take the vertex labels as 1, 2, 3 as in the row order of the vertices in Tb (default
is NULL for both).

ch.data.pnts A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

Value

I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 2D data
set Xp, that is, returns 1 if {p1,p2} is a dominating set of PE-PCD, and returns 0 otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

See Also

Idom.num2PEtri, Idom.num2ASbasic.tri, and Idom.num2AStri

220 Idom.num2PEstd.tetra

Examples

Not run:
c1<-.4; c2<-.6;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.3)

r<-2

Idom.num2PEbasic.tri(Xp[1,],Xp[2,],Xp,r,c1,c2,M)

Idom.num2PEbasic.tri(c(1,2),c(1,3),rbind(c(1,2),c(1,3)),r,c1,c2,M)
Idom.num2PEbasic.tri(c(1,2),c(1,3),rbind(c(1,2),c(1,3)),r,c1,c2,M,
ch.data.pnts = TRUE)

ind.gam2<-vector()
for (i in 1:(n-1))

for (j in (i+1):n)
{if (Idom.num2PEbasic.tri(Xp[i,],Xp[j,],Xp,r,c1,c2,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}

ind.gam2

#or try
rv1<-rel.vert.basic.tri(Xp[1,],c1,c2,M)$rv;
rv2<-rel.vert.basic.tri(Xp[2,],c1,c2,M)$rv;
Idom.num2PEbasic.tri(Xp[1,],Xp[2,],Xp,r,c1,c2,M,rv1,rv2)

#or try
rv1<-rel.vert.basic.tri(Xp[1,],c1,c2,M)$rv;
Idom.num2PEbasic.tri(Xp[1,],Xp[2,],Xp,r,c1,c2,M,rv1)

#or try
rv2<-rel.vert.basic.tri(Xp[2,],c1,c2,M)$rv;
Idom.num2PEbasic.tri(Xp[1,],Xp[2,],Xp,r,c1,c2,M,rv2=rv2)

Idom.num2PEbasic.tri(c(1,2),Xp[2,],Xp,r,c1,c2,M,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not both points are data points in Xp

End(Not run)

Idom.num2PEstd.tetra The indicator for two 3D points constituting a dominating set for Pro-
portional Edge Proximity Catch Digraphs (PE-PCDs) - standard reg-
ular tetrahedron case

Idom.num2PEstd.tetra 221

Description

Returns I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D
data set Xp in the standard regular tetrahedron Th = T ((0, 0, 0), (1, 0, 0), (1/2,

√
3/2, 0), (1/2,

√
3/6,

√
6/3)),

that is, returns 1 if {p1,p2} is a dominating set of PE-PCD, returns 0 otherwise.

Point, p1, is in the region of vertex rv1 (default is NULL) and point, p2, is in the region of vertex
rv2 (default is NULL); vertices (and hence rv1 and rv2) are labeled as 1,2,3,4 in the order they are
stacked row-wise in Th.

PE proximity region is constructed with respect to the tetrahedron Th with expansion parameter
r ≥ 1 and vertex regions are based on center of mass CM (equivalent to circumcenter in this case).

ch.data.pnts is for checking whether points p1 and p2 are data points in Xp or not (default is
FALSE), so by default this function checks whether the points p1 and p2 would constitute a domi-
nating set if they actually were both in the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num2PEstd.tetra(
p1,
p2,
Xp,
r,
rv1 = NULL,
rv2 = NULL,
ch.data.pnts = FALSE

)

Arguments

p1, p2 Two 3D points to be tested for constituting a dominating set of the PE-PCD.

Xp A set of 3D points which constitutes the vertices of the PE-PCD.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

rv1, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They
take the vertex labels as 1,2,3,4 as in the row order of the vertices in Th (default
is NULL for both).

ch.data.pnts A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

Value

I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D data
set Xp), that is, returns 1 if {p1,p2} is a dominating set of PE-PCD, returns 0 otherwise

Author(s)

Elvan Ceyhan

222 Idom.num2PEstd.tetra

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

Idom.num2PEtetra, Idom.num2PEtri and Idom.num2PEbasic.tri

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

n<-5 #try also n<-20
Xp<-runif.std.tetra(n)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))
r<-1.5

Idom.num2PEstd.tetra(Xp[1,],Xp[2,],Xp,r)

ind.gam2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)
{if (Idom.num2PEstd.tetra(Xp[i,],Xp[j,],Xp,r)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}

ind.gam2

#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv;rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv
Idom.num2PEstd.tetra(Xp[1,],Xp[2,],Xp,r,rv1,rv2)

#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv;
Idom.num2PEstd.tetra(Xp[1,],Xp[2,],Xp,r,rv1)

#or try
rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv
Idom.num2PEstd.tetra(Xp[1,],Xp[2,],Xp,r,rv2=rv2)

P1<-c(.1,.1,.1)
P2<-c(.4,.1,.2)
Idom.num2PEstd.tetra(P1,P2,Xp,r)

Idom.num2PEstd.tetra(c(-1,-1,-1),Xp[2,],Xp,r,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE
#since not both points, p1 and p2, are data points in Xp

Idom.num2PEtetra 223

End(Not run)

Idom.num2PEtetra The indicator for two 3D points constituting a dominating set for Pro-
portional Edge Proximity Catch Digraphs (PE-PCDs) - one tetrahe-
dron case

Description

Returns I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the
3D data set Xp in the tetrahedron th, that is, returns 1 if {p1,p2} is a dominating set of PE-PCD,
returns 0 otherwise.

Point, p1, is in the region of vertex rv1 (default is NULL) and point, p2, is in the region of vertex
rv2 (default is NULL); vertices (and hence rv1 and rv2) are labeled as 1,2,3,4 in the order they are
stacked row-wise in th.

PE proximity region is constructed with respect to the tetrahedron th with expansion parameter
r ≥ 1 and vertex regions are based on center of mass (M="CM") or circumcenter (M="CC") only.

ch.data.pnts is for checking whether points p1 and p2 are both data points in Xp or not (de-
fault is FALSE), so by default this function checks whether the points p1 and p2 would constitute a
dominating set if they actually were both in the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num2PEtetra(
p1,
p2,
Xp,
th,
r,
M = "CM",
rv1 = NULL,
rv2 = NULL,
ch.data.pnts = FALSE

)

Arguments

p1, p2 Two 3D points to be tested for constituting a dominating set of the PE-PCD.

Xp A set of 3D points which constitutes the vertices of the PE-PCD.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

224 Idom.num2PEtetra

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

rv1, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They
take the vertex labels as 1,2,3,4 as in the row order of the vertices in th (default
is NULL for both).

ch.data.pnts A logical argument for checking whether both points p1 and p2 are data points
in Xp or not (default is FALSE).

Value

I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D data
set Xp), that is, returns 1 if {p1,p2} is a dominating set of PE-PCD, returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

Idom.num2PEstd.tetra, Idom.num2PEtri and Idom.num2PEbasic.tri

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-5

set.seed(1)
Xp<-runif.tetra(n,tetra)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))

M<-"CM"; #try also M<-"CC";
r<-1.5

Idom.num2PEtetra(Xp[1,],Xp[2,],Xp,tetra,r,M)
Idom.num2PEtetra(c(-1,-1,-1),Xp[2,],Xp,tetra,r,M)

ind.gam2<-ind.gamn2<-vector()
for (i in 1:(n-1))
for (j in (i+1):n)

Idom.num2PEtri 225

{if (Idom.num2PEtetra(Xp[i,],Xp[j,],Xp,tetra,r,M)==1)
{ind.gam2<-rbind(ind.gam2,c(i,j))
}
}

ind.gam2

#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv;rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv
Idom.num2PEtetra(Xp[1,],Xp[2,],Xp,tetra,r,M,rv1,rv2)

#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv;
Idom.num2PEtetra(Xp[1,],Xp[2,],Xp,tetra,r,M,rv1)

#or try
rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv
Idom.num2PEtetra(Xp[1,],Xp[2,],Xp,tetra,r,M,rv2=rv2)

P1<-c(.1,.1,.1)
P2<-c(.4,.1,.2)
Idom.num2PEtetra(P1,P2,Xp,tetra,r,M)

Idom.num2PEtetra(c(-1,-1,-1),Xp[2,],Xp,tetra,r,M,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE
#since not both points, p1 and p2, are data points in Xp

End(Not run)

Idom.num2PEtri The indicator for two points constituting a dominating set for Propor-
tional Edge Proximity Catch Digraphs (PE-PCDs) - one triangle case

Description

Returns I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the
2D data set Xp, that is, returns 1 if {p1,p2} is a dominating set of PE-PCD, and returns 0 otherwise.

Point, p1, is in the region of vertex rv1 (default is NULL) and point, p2, is in the region of vertex
rv2 (default is NULL); vertices (and hence rv1 and rv2) are labeled as 1, 2, 3 in the order they are
stacked row-wise in tri.

PE proximity regions are defined with respect to the triangle tri and vertex regions are based on
center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the
interior of the triangle tri or circumcenter of tri; default is M = (1, 1, 1), i.e., the center of mass
of tri.

ch.data.pnts is for checking whether points p1 and p2 are data points in Xp or not (default is
FALSE), so by default this function checks whether the points p1 and p2 would be a dominating set
if they actually were in the data set.

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).

226 Idom.num2PEtri

Usage

Idom.num2PEtri(
p1,
p2,
Xp,
tri,
r,
M = c(1, 1, 1),
rv1 = NULL,
rv2 = NULL,
ch.data.pnts = FALSE

)

Arguments

p1, p2 Two 2D points to be tested for constituting a dominating set of the PE-PCD.

Xp A set of 2D points which constitutes the vertices of the PE-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; default is M = (1, 1, 1), i.e., the
center of mass of tri.

rv1, rv2 The indices of the vertices whose regions contains p1 and p2, respectively. They
take the vertex labels as 1, 2, 3 as in the row order of the vertices in tri (default
is NULL for both).

ch.data.pnts A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

Value

I({p1,p2} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 2D data
set Xp, that is, returns 1 if {p1,p2} is a dominating set of PE-PCD, and returns 0 otherwise.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Idom.num2PEtri 227

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

See Also

Idom.num2PEbasic.tri, Idom.num2AStri, and Idom.num2PEtetra

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

r<-1.5 #try also r<-2

Idom.num2PEtri(Xp[1,],Xp[2,],Xp,Tr,r,M)

ind.gam2<-vector()
for (i in 1:(n-1))

for (j in (i+1):n)
{if (Idom.num2PEtri(Xp[i,],Xp[j,],Xp,Tr,r,M)==1)
ind.gam2<-rbind(ind.gam2,c(i,j))}

ind.gam2

#or try
rv1<-rel.vert.tri(Xp[1,],Tr,M)$rv;
rv2<-rel.vert.tri(Xp[2,],Tr,M)$rv
Idom.num2PEtri(Xp[1,],Xp[2,],Xp,Tr,r,M,rv1,rv2)

Idom.num2PEtri(Xp[1,],c(1,2),Xp,Tr,r,M,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE
#since not both points, p1 and p2, are data points in Xp

End(Not run)

228 Idom.num3PEstd.tetra

Idom.num3PEstd.tetra The indicator for three 3D points constituting a dominating set for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard
regular tetrahedron case

Description

Returns I({p1,p2,pt3} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are
the 3D data set Xp in the standard regular tetrahedron Th = T ((0, 0, 0), (1, 0, 0), (1/2,

√
3/2, 0), (1/2,

√
3/6,

√
6/3)),

that is, returns 1 if {p1,p2,pt3} is a dominating set of PE-PCD, returns 0 otherwise.

Point, p1, is in the region of vertex rv1 (default is NULL), point, p2, is in the region of vertex rv2
(default is NULL); point, pt3), is in the region of vertex rv3) (default is NULL); vertices (and hence
rv1, rv2 and rv3) are labeled as 1,2,3,4 in the order they are stacked row-wise in Th.

PE proximity region is constructed with respect to the tetrahedron Th with expansion parameter
r ≥ 1 and vertex regions are based on center of mass CM (equivalent to circumcenter in this case).

ch.data.pnts is for checking whether points p1, p2 and pt3 are all data points in Xp or not (default
is FALSE), so by default this function checks whether the points p1, p2 and pt3 would constitute a
dominating set if they actually were all in the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num3PEstd.tetra(
p1,
p2,
pt3,
Xp,
r,
rv1 = NULL,
rv2 = NULL,
rv3 = NULL,
ch.data.pnts = FALSE

)

Arguments

p1, p2, pt3 Three 3D points to be tested for constituting a dominating set of the PE-PCD.

Xp A set of 3D points which constitutes the vertices of the PE-PCD.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

rv1, rv2, rv3 The indices of the vertices whose regions contains p1, p2 and pt3, respectively.
They take the vertex labels as 1,2,3,4 as in the row order of the vertices in Th

(default is NULL for all).

ch.data.pnts A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

Idom.num3PEstd.tetra 229

Value

I({p1,p2,pt3} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D
data set Xp), that is, returns 1 if {p1,p2,pt3} is a dominating set of PE-PCD, returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

Idom.num3PEtetra

Examples

Not run:
set.seed(123)
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-5 #try 20, 40, 100 (larger n may take a long time)
Xp<-runif.std.tetra(n)$g #try also Xp<-cbind(runif(n),runif(n),runif(n))
r<-1.25

Idom.num3PEstd.tetra(Xp[1,],Xp[2,],Xp[3,],Xp,r)

ind.gam3<-vector()
for (i in 1:(n-2))
for (j in (i+1):(n-1))
for (k in (j+1):n)

{if (Idom.num3PEstd.tetra(Xp[i,],Xp[j,],Xp[k,],Xp,r)==1)
ind.gam3<-rbind(ind.gam3,c(i,j,k))}

ind.gam3

#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv; rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv;
rv3<-rel.vert.tetraCC(Xp[3,],tetra)$rv
Idom.num3PEstd.tetra(Xp[1,],Xp[2,],Xp[3,],Xp,r,rv1,rv2,rv3)

#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv;
Idom.num3PEstd.tetra(Xp[1,],Xp[2,],Xp[3,],Xp,r,rv1)

230 Idom.num3PEtetra

#or try
rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv
Idom.num3PEstd.tetra(Xp[1,],Xp[2,],Xp[3,],Xp,r,rv2=rv2)

P1<-c(.1,.1,.1)
P2<-c(.3,.3,.3)
P3<-c(.4,.1,.2)
Idom.num3PEstd.tetra(P1,P2,P3,Xp,r)

Idom.num3PEstd.tetra(Xp[1,],c(1,1,1),Xp[3,],Xp,r,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp

End(Not run)

Idom.num3PEtetra The indicator for three 3D points constituting a dominating set for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one tetra-
hedron case

Description

Returns I({p1,p2,pt3} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are
the 3D data set Xp in the tetrahedron th, that is, returns 1 if {p1,p2,pt3} is a dominating set of
PE-PCD, returns 0 otherwise.

Point, p1, is in the region of vertex rv1 (default is NULL), point, p2, is in the region of vertex rv2
(default is NULL); point, pt3), is in the region of vertex rv3) (default is NULL); vertices (and hence
rv1, rv2 and rv3) are labeled as 1,2,3,4 in the order they are stacked row-wise in th.

PE proximity region is constructed with respect to the tetrahedron th with expansion parameter
r ≥ 1 and vertex regions are based on center of mass CM (equivalent to circumcenter in this case).

ch.data.pnts is for checking whether points p1, p2 and pt3 are all data points in Xp or not (default
is FALSE), so by default this function checks whether the points p1, p2 and pt3 would constitute a
dominating set if they actually were all in the data set.

See also (Ceyhan (2005, 2010)).

Usage

Idom.num3PEtetra(
p1,
p2,
pt3,
Xp,
th,
r,
M = "CM",
rv1 = NULL,
rv2 = NULL,

Idom.num3PEtetra 231

rv3 = NULL,
ch.data.pnts = FALSE

)

Arguments

p1, p2, pt3 Three 3D points to be tested for constituting a dominating set of the PE-PCD.

Xp A set of 3D points which constitutes the vertices of the PE-PCD.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

rv1, rv2, rv3 The indices of the vertices whose regions contains p1, p2 and pt3, respectively.
They take the vertex labels as 1,2,3,4 as in the row order of the vertices in th
(default is NULL for all).

ch.data.pnts A logical argument for checking whether points p1 and p2 are data points in Xp
or not (default is FALSE).

Value

I({p1,p2,pt3} is a dominating set of the PE-PCD) where the vertices of the PE-PCD are the 3D
data set Xp), that is, returns 1 if {p1,p2,pt3} is a dominating set of PE-PCD, returns 0 otherwise

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

Idom.num3PEstd.tetra

Examples

Not run:
set.seed(123)
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

232 Idom.numASup.bnd.tri

n<-5 #try 20, 40, 100 (larger n may take a long time)
Xp<-runif.tetra(n,tetra)$g

M<-"CM"; #try also M<-"CC";
r<-1.25

Idom.num3PEtetra(Xp[1,],Xp[2,],Xp[3,],Xp,tetra,r,M)

ind.gam3<-vector()
for (i in 1:(n-2))
for (j in (i+1):(n-1))
for (k in (j+1):n)
{if (Idom.num3PEtetra(Xp[i,],Xp[j,],Xp[k,],Xp,tetra,r,M)==1)
ind.gam3<-rbind(ind.gam3,c(i,j,k))}

ind.gam3

#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv; rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv;
rv3<-rel.vert.tetraCC(Xp[3,],tetra)$rv
Idom.num3PEtetra(Xp[1,],Xp[2,],Xp[3,],Xp,tetra,r,M,rv1,rv2,rv3)

#or try
rv1<-rel.vert.tetraCC(Xp[1,],tetra)$rv;
Idom.num3PEtetra(Xp[1,],Xp[2,],Xp[3,],Xp,tetra,r,M,rv1)

#or try
rv2<-rel.vert.tetraCC(Xp[2,],tetra)$rv
Idom.num3PEtetra(Xp[1,],Xp[2,],Xp[3,],Xp,tetra,r,M,rv2=rv2)

P1<-c(.1,.1,.1)
P2<-c(.3,.3,.3)
P3<-c(.4,.1,.2)
Idom.num3PEtetra(P1,P2,P3,Xp,tetra,r,M)

Idom.num3PEtetra(Xp[1,],c(1,1,1),Xp[3,],Xp,tetra,r,M,ch.data.pnts = FALSE)
#gives an error message if ch.data.pnts = TRUE since not all points are data points in Xp

End(Not run)

Idom.numASup.bnd.tri Indicator for an upper bound for the domination number of Arc Slice
Proximity Catch Digraph (AS-PCD) by the exact algorithm - one tri-
angle case

Description

Returns I(domination number of AS-PCD whose vertices are the data points Xp is less than or equal
to k), that is, returns 1 if the domination number of AS-PCD is less than the prespecified value k,

Idom.numASup.bnd.tri 233

returns 0 otherwise. It also provides the vertices (i.e., data points) in a dominating set of size k of
AS-PCD.

AS proximity regions are constructed with respect to the triangle tri and vertex regions are based
on the center M="CC" for circumcenter of tri; or M = (m1,m2) in Cartesian coordinates or
M = (α, β, γ) in barycentric coordinates in the interior of the triangle tri; default is M="CC" i.e.,
circumcenter of tri.

The vertices of triangle, tri, are labeled as 1, 2, 3 according to the row number the vertex is
recorded in tri. Loops are allowed in the digraph. It takes a long time for large number of vertices
(i.e., large number of row numbers).

Usage

Idom.numASup.bnd.tri(Xp, k, tri, M = "CC")

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.

k A positive integer to be tested for an upper bound for the domination number of
AS-PCDs.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a
2D point in Cartesian coordinates or a 3D point in barycentric coordinates which
serves as a center in the interior of tri; default is M="CC" i.e., the circumcenter
of tri.

Value

A list with the elements

domUB The suggested upper bound (to be checked) for the domination number of AS-
PCD. It is prespecified as k in the function arguments.

Idom.num.up.bnd

The indicator for the upper bound for domination number of AS-PCD being the
specified value k or not. It returns 1 if the upper bound is k, and 0 otherwise.

ind.dom.set The vertices (i.e., data points) in the dominating set of size k if it exists, other-
wise it yields NULL.

Author(s)

Elvan Ceyhan

See Also

Idom.numCSup.bnd.tri, Idom.numCSup.bnd.std.tri, Idom.num.up.bnd, and dom.num.exact

234 Idom.numCSup.bnd.std.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);

Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

Idom.numASup.bnd.tri(Xp,1,Tr)

for (k in 1:n)
print(c(k,Idom.numASup.bnd.tri(Xp,k,Tr,M)))

Idom.numASup.bnd.tri(Xp,k=4,Tr,M)

P<-c(.4,.2)
Idom.numASup.bnd.tri(P,1,Tr,M)

Idom.numASup.bnd.tri(rbind(Xp,Xp),k=2,Tr,M)

End(Not run)

Idom.numCSup.bnd.std.tri

The indicator for k being an upper bound for the domination number
of Central Similarity Proximity Catch Digraph (CS-PCD) by the exact
algorithm - standard equilateral triangle case

Description

Returns I(domination number of CS-PCD is less than or equal to k) where the vertices of the CS-
PCD are the data points Xp, that is, returns 1 if the domination number of CS-PCD is less than
the prespecified value k, returns 0 otherwise. It also provides the vertices (i.e., data points) in a
dominating set of size k of CS-PCD.

CS proximity region is constructed with respect to the standard equilateral triangle Te = T (A,B,C) =
T ((0, 0), (1, 0), (1/2,

√
3/2)) with expansion parameter t > 0 and edge regions are based on the

center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the
interior of Te; default is M = (1, 1, 1) i.e., the center of mass of Te (which is equivalent to the
circumcenter of Te).

Edges of Te, AB, BC, AC, are also labeled as 3, 1, and 2, respectively. Loops are allowed in the
digraph. It takes a long time for large number of vertices (i.e., large number of row numbers).

See also (Ceyhan (2012)).

Idom.numCSup.bnd.std.tri 235

Usage

Idom.numCSup.bnd.std.tri(Xp, k, t, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of CS-PCD.

k A positive integer representing an upper bound for the domination number of
CS-PCD.

t A positive real number which serves as the expansion parameter in CS proximity
region in the standard equilateral triangle Te = T ((0, 0), (1, 0), (1/2,

√
3/2)).

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle Te;
default is M = (1, 1, 1) i.e. the center of mass of Te.

Value

A list with two elements

domUB The upper bound k (to be checked) for the domination number of CS-PCD. It is
prespecified as k in the function arguments.

Idom.num.up.bnd

The indicator for the upper bound for domination number of CS-PCD being the
specified value k or not. It returns 1 if the upper bound is k, and 0 otherwise.

ind.domset The vertices (i.e., data points) in the dominating set of size k if it exists, other-
wise it is NULL.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number of
random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.numCSup.bnd.tri, Idom.num.up.bnd, Idom.numASup.bnd.tri, and dom.num.exact

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

236 Idom.numCSup.bnd.tri

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

t<-.5

Idom.numCSup.bnd.std.tri(Xp,1,t,M)

for (k in 1:n)
print(c(k,Idom.numCSup.bnd.std.tri(Xp,k,t,M)$Idom.num.up.bnd))
print(c(k,Idom.numCSup.bnd.std.tri(Xp,k,t,M)$domUB))

End(Not run)

Idom.numCSup.bnd.tri Indicator for an upper bound for the domination number of Central
Similarity Proximity Catch Digraph (CS-PCD) by the exact algorithm
- one triangle case

Description

Returns I(domination number of CS-PCD is less than or equal to k) where the vertices of the CS-
PCD are the data points Xp, that is, returns 1 if the domination number of CS-PCD is less than
the prespecified value k, returns 0 otherwise. It also provides the vertices (i.e., data points) in a
dominating set of size k of CS-PCD.

CS proximity region is constructed with respect to the triangle tri= T (A,B,C) with expansion
parameter t > 0 and edge regions are based on the center M = (m1,m2) in Cartesian coordinates
or M = (α, β, γ) in barycentric coordinates in the interior of tri; default is M = (1, 1, 1) i.e., the
center of mass of tri.

Edges of tri, AB, BC, AC, are also labeled as 3, 1, and 2, respectively. Loops are allowed in the
digraph.

See also (Ceyhan (2012)).

Caveat: It takes a long time for large number of vertices (i.e., large number of row numbers).

Usage

Idom.numCSup.bnd.tri(Xp, k, tri, t, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of CS-PCD.

k A positive integer to be tested for an upper bound for the domination number of
CS-PCDs.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region in the triangle tri.

Idom.numCSup.bnd.tri 237

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri; default is M =
(1, 1, 1), i.e. the center of mass of tri.

Value

A list with two elements

domUB The upper bound k (to be checked) for the domination number of CS-PCD. It is
prespecified as k in the function arguments.

Idom.num.up.bnd

The indicator for the upper bound for domination number of CS-PCD being the
specified value k or not. It returns 1 if the upper bound is k, and 0 otherwise.

ind.domset The vertices (i.e., data points) in the dominating set of size k if it exists, other-
wise it is NULL.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number of
random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.numCSup.bnd.std.tri, Idom.num.up.bnd, Idom.numASup.bnd.tri, and dom.num.exact

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

t<-.5

Idom.numCSup.bnd.tri(Xp,1,Tr,t,M)

for (k in 1:n)
print(c(k,Idom.numCSup.bnd.tri(Xp,k,Tr,t,M)))

End(Not run)

238 Idom.setAStri

Idom.setAStri The indicator for the set of points S being a dominating set or not for
Arc Slice Proximity Catch Digraphs (AS-PCDs) - one triangle case

Description

Returns I(S a dominating set of AS-PCD), that is, returns 1 if S is a dominating set of AS-PCD,
returns 0 otherwise.

AS-PCD has vertex set Xp and AS proximity region is constructed with vertex regions based
on the center M="CC" for circumcenter of tri; or M = (m1,m2) in Cartesian coordinates or
M = (α, β, γ) in barycentric coordinates in the interior of the triangle tri; default is M="CC" i.e.,
circumcenter of tri whose vertices are also labeled as edges 1, 2, and 3, respectively.

See also (Ceyhan (2005, 2010)).

Usage

Idom.setAStri(S, Xp, tri, M = "CC")

Arguments

S A set of 2D points which is to be tested for being a dominating set for the AS-
PCDs.

Xp A set of 2D points which constitute the vertices of the AS-PCD.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a
2D point in Cartesian coordinates or a 3D point in barycentric coordinates which
serves as a center in the interior of tri; default is M="CC" i.e., the circumcenter
of tri.

Value

I(S a dominating set of AS-PCD), that is, returns 1 if S is a dominating set of AS-PCD whose
vertices are the data points in Xp; returns 0 otherwise, where AS proximity region is constructed in
the triangle tri.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Idom.setAStri 239

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

IarcASset2pnt.tri, Idom.setPEtri and Idom.setCStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);

Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

S<-rbind(Xp[1,],Xp[2,])
Idom.setAStri(S,Xp,Tr,M)

S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
Idom.setAStri(S,Xp,Tr,M)

S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
Idom.setAStri(S,Xp,Tr,M)

Idom.setAStri(c(.2,.5),Xp,Tr,M)
Idom.setAStri(c(.2,.5),c(.2,.5),Tr,M)
Idom.setAStri(Xp[5,],Xp[2,],Tr,M)

S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,],c(.2,.5))
Idom.setAStri(S,Xp[3,],Tr,M)

Idom.setAStri(Xp,Xp,Tr,M)

P<-c(.4,.2)
S<-Xp[c(1,3,4),]
Idom.setAStri(Xp,P,Tr,M)
Idom.setAStri(S,P,Tr,M)
Idom.setAStri(S,Xp,Tr,M)

Idom.setAStri(rbind(S,S),Xp,Tr,M)

End(Not run)

240 Idom.setCSstd.tri

Idom.setCSstd.tri The indicator for the set of points S being a dominating set or not for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - standard
equilateral triangle case

Description

Returns I(S a dominating set of the CS-PCD) where the vertices of the CS-PCD are the data set
Xp), that is, returns 1 if S is a dominating set of CS-PCD, returns 0 otherwise.

CS proximity region is constructed with respect to the standard equilateral triangle Te = T (A,B,C) =
T ((0, 0), (1, 0), (1/2,

√
3/2)) with expansion parameter t > 0 and edge regions are based on the

center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the
interior of Te; default is M = (1, 1, 1) i.e., the center of mass of Te (which is equivalent to the
circumcenter of Te).

Edges of Te, AB, BC, AC, are also labeled as 3, 1, and 2, respectively.

See also (Ceyhan (2012)).

Usage

Idom.setCSstd.tri(S, Xp, t, M = c(1, 1, 1))

Arguments

S A set of 2D points which is to be tested for being a dominating set for the CS-
PCDs.

Xp A set of 2D points which constitute the vertices of the CS-PCD.

t A positive real number which serves as the expansion parameter in CS proximity
region in the standard equilateral triangle Te = T ((0, 0), (1, 0), (1/2,

√
3/2)).

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle Te;
default is M = (1, 1, 1) i.e. the center of mass of Te.

Value

I(S a dominating set of the CS-PCD), that is, returns 1 if S is a dominating set of CS-PCD, returns
0 otherwise, where CS proximity region is constructed in the standard equilateral triangle Te

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number of
random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Idom.setCStri 241

See Also

Idom.setCStri and Idom.setPEstd.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

t<-.5

S<-rbind(Xp[1,],Xp[2,])
Idom.setCSstd.tri(S,Xp,t,M)

S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
Idom.setCSstd.tri(S,Xp,t,M)

End(Not run)

Idom.setCStri The indicator for the set of points S being a dominating set or not for
Central Similarity Proximity Catch Digraphs (CS-PCDs) - one trian-
gle case

Description

Returns I(S a dominating set of CS-PCD whose vertices are the data set Xp), that is, returns 1 if S
is a dominating set of CS-PCD, returns 0 otherwise.

CS proximity region is constructed with respect to the triangle tri with the expansion parameter
t > 0 and edge regions are based on the center M = (m1,m2) in Cartesian coordinates or M =
(α, β, γ) in barycentric coordinates in the interior of the triangle tri; default is M = (1, 1, 1) i.e.,
the center of mass of tri.

The triangle tri= T (A,B,C) has edges AB, BC, AC which are also labeled as edges 3, 1, and
2, respectively.

See also (Ceyhan (2012)).

Usage

Idom.setCStri(S, Xp, tri, t, M = c(1, 1, 1))

242 Idom.setCStri

Arguments

S A set of 2D points which is to be tested for being a dominating set for the CS-
PCDs.

Xp A set of 2D points which constitute the vertices of the CS-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region constructed in the triangle tri.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri; default is M =
(1, 1, 1) i.e., the center of mass of tri.

Value

I(S a dominating set of the CS-PCD), that is, returns 1 if S is a dominating set of CS-PCD whose
vertices are the data points in Xp; returns 0 otherwise, where CS proximity region is constructed in
the triangle tri

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number of
random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

Idom.setCSstd.tri, Idom.setPEtri and Idom.setAStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

tau<-.5
S<-rbind(Xp[1,],Xp[2,])
Idom.setCStri(S,Xp,Tr,tau,M)

S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
Idom.setCStri(S,Xp,Tr,tau,M)

Idom.setPEstd.tri 243

End(Not run)

Idom.setPEstd.tri The indicator for the set of points S being a dominating set or not for
Proportional Edge Proximity Catch Digraphs (PE-PCDs) - standard
equilateral triangle case

Description

Returns I(S a dominating set of PE-PCD whose vertices are the data points Xp) for S in the standard
equilateral triangle, that is, returns 1 if S is a dominating set of PE-PCD, and returns 0 otherwise.

PE proximity region is constructed with respect to the standard equilateral triangle Te = T (A,B,C) =
T ((0, 0), (1, 0), (1/2,

√
3/2)) with expansion parameter r ≥ 1 and vertex regions are based on the

center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the
interior of Te; default is M = (1, 1, 1), i.e., the center of mass of Te (which is also equivalent to the
circumcenter of Te). Vertices of Te are also labeled as 1, 2, and 3, respectively.

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).

Usage

Idom.setPEstd.tri(S, Xp, r, M = c(1, 1, 1))

Arguments

S A set of 2D points whose PE proximity regions are considered.

Xp A set of 2D points which constitutes the vertices of the PE-PCD.

r A positive real number which serves as the expansion parameter in PE proximity
region in the standard equilateral triangle Te = T ((0, 0), (1, 0), (1/2,

√
3/2));

must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle Te;
default is M = (1, 1, 1) i.e. the center of mass of Te.

Value

I(S a dominating set of PE-PCD) for S in the standard equilateral triangle, that is, returns 1 if S is
a dominating set of PE-PCD, and returns 0 otherwise, where PE proximity region is constructed in
the standard equilateral triangle Te.

Author(s)

Elvan Ceyhan

244 Idom.setPEtri

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

See Also

Idom.setPEtri and Idom.setCSstd.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

r<-1.5

S<-rbind(Xp[1,],Xp[2,])
Idom.setPEstd.tri(S,Xp,r,M)

S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,],c(.2,.5))
Idom.setPEstd.tri(S,Xp[3,],r,M)

End(Not run)

Idom.setPEtri The indicator for the set of points S being a dominating set or not
for Proportional Edge Proximity Catch Digraphs (PE-PCDs) - one
triangle case

Idom.setPEtri 245

Description

Returns I(S a dominating set of PE-PCD whose vertices are the data set Xp), that is, returns 1 if S
is a dominating set of PE-PCD, and returns 0 otherwise.

PE proximity region is constructed with respect to the triangle tri with the expansion parameter
r ≥ 1 and vertex regions are based on the center M = (m1,m2) in Cartesian coordinates or M =
(α, β, γ) in barycentric coordinates in the interior of the triangle tri or based on the circumcenter
of tri; default is M = (1, 1, 1), i.e., the center of mass of tri. The triangle tri= T (A,B,C) has
edges AB, BC, AC which are also labeled as edges 3, 1, and 2, respectively.

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).

Usage

Idom.setPEtri(S, Xp, tri, r, M = c(1, 1, 1))

Arguments

S A set of 2D points which is to be tested for being a dominating set for the PE-
PCDs.

Xp A set of 2D points which constitute the vertices of the PE-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region constructed in the triangle tri; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; default is M = (1, 1, 1), i.e., the
center of mass of tri.

Value

I(S a dominating set of PE-PCD), that is, returns 1 if S is a dominating set of PE-PCD whose
vertices are the data points in Xp; and returns 0 otherwise, where PE proximity region is constructed
in the triangle tri.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number

246 in.circle

of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

See Also

Idom.setPEstd.tri, IarcPEset2pnt.tri, Idom.setCStri, and Idom.setAStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$gen.points

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

r<-1.5

S<-rbind(Xp[1,],Xp[2,])
Idom.setPEtri(S,Xp,Tr,r,M)

S<-rbind(Xp[1,],Xp[2,],Xp[3,],Xp[5,])
Idom.setPEtri(S,Xp,Tr,r,M)

S<-rbind(c(.1,.1),c(.3,.4),c(.5,.3))
Idom.setPEtri(S,Xp,Tr,r,M)

End(Not run)

in.circle Check whether a point is inside a circle

Description

Checks if the point p lies in the circle with center cent and radius rad, denoted as C(cent,rad).
So, it returns 1 or TRUE if p is inside the circle, and 0 otherwise.

boundary is a logical argument (default=FALSE) to include boundary or not, so if it is TRUE, the
function checks if the point, p, lies in the closure of the circle (i.e., interior and boundary combined)
else it checks if p lies in the interior of the circle.

Usage

in.circle(p, cent, rad, boundary = TRUE)

in.tetrahedron 247

Arguments

p A 2D point to be checked whether it is inside the circle or not.

cent A 2D point in Cartesian coordinates which serves as the center of the circle.

rad A positive real number which serves as the radius of the circle.

boundary A logical parameter (default=TRUE) to include boundary or not, so if it is TRUE,
the function checks if the point, p, lies in the closure of the circle (i.e., interior
and boundary combined); else, it checks if p lies in the interior of the circle.

Value

Indicator for the point p being inside the circle or not, i.e., returns 1 or TRUE if p is inside the circle,
and 0 otherwise.

Author(s)

Elvan Ceyhan

See Also

in.triangle, in.tetrahedron, and on.convex.hull from the interp package for documenta-
tion for in.convex.hull

Examples

Not run:
cent<-c(1,1); rad<-1; p<-c(1.4,1.2)
#try also cent<-runif(2); rad<-runif(1); p<-runif(2);

in.circle(p,cent,rad)

p<-c(.4,-.2)
in.circle(p,cent,rad)

p<-c(1,0)
in.circle(p,cent,rad)
in.circle(p,cent,rad,boundary=FALSE)

End(Not run)

in.tetrahedron Check whether a point is inside a tetrahedron

248 in.tetrahedron

Description

Checks if the point p lies in the tetrahedron, th, using the barycentric coordinates, generally denoted
as (α, β, γ). If all (normalized or non-normalized) barycentric coordinates are positive then the
point p is inside the tetrahedron, if all are nonnegative with one or more are zero, then p falls on the
boundary. If some of the barycentric coordinates are negative, then p falls outside the tetrahedron.

boundary is a logical argument (default=FALSE) to include boundary or not, so if it is TRUE, the
function checks if the point, p, lies in the closure of the tetrahedron (i.e., interior and boundary
combined) else it checks if p lies in the interior of the tetrahedron.

Usage

in.tetrahedron(p, th, boundary = TRUE)

Arguments

p A 3D point to be checked whether it is inside the tetrahedron or not.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

boundary A logical parameter (default=TRUE) to include boundary or not, so if it is TRUE,
the function checks if the point, p, lies in the closure of the tetrahedron (i.e.,
interior and boundary combined); else, it checks if p lies in the interior of the
tetrahedron.

Value

A list with two elements

in.tetra A logical output, if the point, p, is inside the tetrahedron, th, it is TRUE, else it is
FALSE.

barycentric The barycentric coordinates of the point p with respect to the tetrahedron, th.

Author(s)

Elvan Ceyhan

See Also

in.triangle

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3); P<-c(.1,.1,.1)
tetra<-rbind(A,B,C,D)

in.tetrahedron(P,tetra,boundary = FALSE)

in.tetrahedron(C,tetra)
in.tetrahedron(C,tetra,boundary = FALSE)

in.tri.all 249

n1<-5; n2<-5; n<-n1+n2
Xp<-rbind(cbind(runif(n1),runif(n1,0,sqrt(3)/2),runif(n1,0,sqrt(6)/3)),

runif.tetra(n2,tetra)$g)

in.tetra<-vector()
for (i in 1:n)
{in.tetra<-c(in.tetra,in.tetrahedron(Xp[i,],tetra,boundary = TRUE)$in.tetra) }

in.tetra
dat.tet<-Xp[in.tetra,]
if (is.vector(dat.tet)) {dat.tet<-matrix(dat.tet,nrow=1)}

Xlim<-range(tetra[,1],Xp[,1])
Ylim<-range(tetra[,2],Xp[,2])
Zlim<-range(tetra[,3],Xp[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3], phi=40,theta=40,
bty = "g", pch = 20, cex = 1,
ticktype="detailed",xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05),zlim=Zlim+zd*c(-.05,.05))
#add the vertices of the tetrahedron
plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add=TRUE)
plot3D::points3D(dat.tet[,1],dat.tet[,2],dat.tet[,3],pch=4, add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)

plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)

in.tetrahedron(P,tetra) #this works fine

End(Not run)

in.tri.all Check whether all points in a data set are inside the triangle

Description

Checks if all the data points in the 2D data set, Xp, lie in the triangle, tri, using the barycentric
coordinates, generally denoted as (α, β, γ).

If all (normalized or non-normalized) barycentric coordinates of a point are positive then the point
is inside the triangle, if all are nonnegative with one or more are zero, then the point falls in the
boundary. If some of the barycentric coordinates are negative, then the point falls outside the
triangle.

250 in.tri.all

boundary is a logical argument (default=TRUE) to include boundary or not, so if it is TRUE, the
function checks if a point lies in the closure of the triangle (i.e., interior and boundary combined);
else, it checks if the point lies in the interior of the triangle.

Usage

in.tri.all(Xp, tri, boundary = TRUE)

Arguments

Xp A set of 2D points representing the set of data points.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

boundary A logical parameter (default=FALSE) to include boundary or not, so if it is TRUE,
the function checks if a point lies in the closure of the triangle (i.e., interior and
boundary combined) else it checks if the point lies in the interior of the triangle.

Value

A logical output, if all data points in Xp are inside the triangle, tri, the output is TRUE, else it is
FALSE.

Author(s)

Elvan Ceyhan

See Also

in.triangle and on.convex.hull from the interp package for documentation for in.convex.hull

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2); p<-c(1.4,1.2)

Tr<-rbind(A,B,C)

in.tri.all(p,Tr)

#for the vertex A
in.tri.all(A,Tr)
in.tri.all(A,Tr,boundary = FALSE)

#for a point on the edge AB
D3<-(A+B)/2
in.tri.all(D3,Tr)
in.tri.all(D3,Tr,boundary = FALSE)

#data set
n<-10
Xp<-cbind(runif(n),runif(n))
in.tri.all(Xp,Tr,boundary = TRUE)

in.triangle 251

Xp<-runif.std.tri(n)$gen.points
in.tri.all(Xp,Tr)
in.tri.all(Xp,Tr,boundary = FALSE)

Xp<-runif.tri(n,Tr)$g
in.tri.all(Xp,Tr)
in.tri.all(Xp,Tr,boundary = FALSE)

End(Not run)

in.triangle Check whether a point is inside a triangle

Description

Checks if the point p lies in the triangle, tri, using the barycentric coordinates, generally denoted
as (α, β, γ).

If all (normalized or non-normalized) barycentric coordinates are positive then the point p is inside
the triangle, if all are nonnegative with one or more are zero, then p falls in the boundary. If some
of the barycentric coordinates are negative, then p falls outside the triangle.

boundary is a logical argument (default=TRUE) to include boundary or not, so if it is TRUE, the func-
tion checks if the point, p, lies in the closure of the triangle (i.e., interior and boundary combined);
else, it checks if p lies in the interior of the triangle.

Usage

in.triangle(p, tri, boundary = TRUE)

Arguments

p A 2D point to be checked whether it is inside the triangle or not.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

boundary A logical parameter (default=TRUE) to include boundary or not, so if it is TRUE,
the function checks if the point, p, lies in the closure of the triangle (i.e., interior
and boundary combined); else, it checks if p lies in the interior of the triangle.

Value

A list with two elements

in.tri A logical output, it is TRUE, if the point, p, is inside the triangle, tri, else it is
FALSE.

barycentric The barycentric coordinates (α, β, γ) of the point p with respect to the triangle,
tri.

252 inci.matAS

Author(s)

Elvan Ceyhan

See Also

in.tri.all and on.convex.hull from the interp package for documentation for in.convex.hull

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2); p<-c(1.4,1.2)
Tr<-rbind(A,B,C)
in.triangle(p,Tr)

p<-c(.4,-.2)
in.triangle(p,Tr)

#for the vertex A
in.triangle(A,Tr)
in.triangle(A,Tr,boundary = FALSE)

#for a point on the edge AB
D3<-(A+B)/2
in.triangle(D3,Tr)
in.triangle(D3,Tr,boundary = FALSE)

#for a NA entry point
p<-c(NA,.2)
in.triangle(p,Tr)

End(Not run)

inci.matAS Incidence matrix for Arc Slice Proximity Catch Digraphs (AS-PCDs)
- multiple triangle case

Description

Returns the incidence matrix for the AS-PCD whose vertices are a given 2D numerical data set, Xp,
in the convex hull of Yp which is partitioned by the Delaunay triangles based on Yp points.

AS proximity regions are defined with respect to the Delaunay triangles based on Yp points and
vertex regions are based on the center M="CC" for circumcenter of each Delaunay triangle or M =
(α, β, γ) in barycentric coordinates in the interior of each Delaunay triangle; default is M="CC" i.e.,
circumcenter of each triangle. Loops are allowed, so the diagonal entries are all equal to 1.

See (Ceyhan (2005, 2010)) for more on AS-PCDs. Also see (Okabe et al. (2000); Ceyhan (2010);
Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

inci.matAS 253

Usage

inci.matAS(Xp, Yp, M = "CC")

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

M The center of the triangle. "CC" stands for circumcenter of each Delaunay tri-
angle or 3D point in barycentric coordinates which serves as a center in the
interior of each Delaunay triangle; default is M="CC" i.e., the circumcenter of
each triangle.

Value

Incidence matrix for the AS-PCD whose vertices are the 2D data set, Xp, and AS proximity regions
are defined in the Delaunay triangles based on Yp points.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

inci.matAStri, inci.matPE, and inci.matCS

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

254 inci.matAStri

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-"CC" #try also M<-c(1,1,1)

IM<-inci.matAS(Xp,Yp,M)
IM
dom.num.greedy(IM) #try also dom.num.exact(IM) #this might take a long time for large nx

IM<-inci.matAS(Xp,Yp[1:3,],M)

inci.matAS(Xp,rbind(Yp,Yp))

End(Not run)

inci.matAStri Incidence matrix for Arc Slice Proximity Catch Digraphs (AS-PCDs)
- one triangle case

Description

Returns the incidence matrix for the AS-PCD whose vertices are the given 2D numerical data set,
Xp.

AS proximity regions are defined with respect to the triangle tri= T (v = 1, v = 2, v = 3) and
vertex regions based on the center M="CC" for circumcenter of tri; or M = (m1,m2) in Cartesian
coordinates or M = (α, β, γ) in barycentric coordinates in the interior of the triangle tri; default
is M="CC" i.e., circumcenter of tri. Loops are allowed, so the diagonal entries are all equal to 1.

See also (Ceyhan (2005, 2010)).

Usage

inci.matAStri(Xp, tri, M = "CC")

Arguments

Xp A set of 2D points which constitute the vertices of AS-PCD.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a
2D point in Cartesian coordinates or a 3D point in barycentric coordinates which
serves as a center in the interior of tri; default is M="CC" i.e., the circumcenter
of tri.

inci.matAStri 255

Value

Incidence matrix for the AS-PCD whose vertices are 2D data set, Xp, and AS proximity regions are
defined with respect to the triangle tri and vertex regions based on circumcenter.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

inci.matAS, inci.matPEtri, and inci.matCStri

Examples

Not run:

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

IM<-IncMatAStri(Xp,Tr,M)
IM

dom.num.greedy(IM)
dom.num.exact(IM)

End(Not run)

256 inci.matCS

inci.matCS Incidence matrix for Central Similarity Proximity Catch Digraphs
(CS-PCDs) - multiple triangle case

Description

Returns the incidence matrix of Central Similarity Proximity Catch Digraph (CS-PCD) whose ver-
tices are the data points in Xp in the multiple triangle case.

CS proximity regions are defined with respect to the Delaunay triangles based on Yp points with
expansion parameter t > 0 and edge regions in each triangle are based on the center M = (α, β, γ)
in barycentric coordinates in the interior of each Delaunay triangle (default for M = (1, 1, 1) which
is the center of mass of the triangle). Each Delaunay triangle is first converted to an (nonscaled)
basic triangle so that M will be the same type of center for each Delaunay triangle (this conversion
is not necessary when M is CM).

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For
the incidence matrix loops are allowed, so the diagonal entries are all equal to 1.

See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) for more on CS-PCDs. Also see (Ok-
abe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the
corresponding algorithm.

Usage

inci.matCS(Xp, Yp, t, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of the CS-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 3D point in barycentric coordinates which serves as a center in the interior of
each Delaunay triangle, default for M = (1, 1, 1) which is the center of mass of
each triangle.

Value

Incidence matrix for the CS-PCD with vertices being 2D data set, Xp. CS proximity regions are
constructed with respect to the Delaunay triangles and M-edge regions.

Author(s)

Elvan Ceyhan

inci.matCS 257

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

inci.matCStri, inci.matCSstd.tri, inci.matAS, and inci.matPE

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)

t<-1.5 #try also t<-2

IM<-inci.matCS(Xp,Yp,t,M)
IM
dom.num.greedy(IM) #try also dom.num.exact(IM) #takes a very long time for large nx, try smaller nx
Idom.num.up.bnd(IM,3) #takes a very long time for large nx, try smaller nx

End(Not run)

258 inci.matCS1D

inci.matCS1D Incidence matrix for Central Similarity Proximity Catch Digraphs
(CS-PCDs) for 1D data - multiple interval case

Description

Returns the incidence matrix for the CS-PCD for a given 1D numerical data set, Xp, as the vertices
of the digraph and Yp determines the end points of the intervals (in the multi-interval case). Loops
are allowed, so the diagonal entries are all equal to 1.

CS proximity region is constructed with an expansion parameter t > 0 and a centrality parameter
c ∈ (0, 1).

See also (Ceyhan (2016)).

Usage

inci.matCS1D(Xp, Yp, t, c = 0.5)

Arguments

Xp a set of 1D points which constitutes the vertices of the digraph.

Yp a set of 1D points which constitutes the end points of the intervals that partition
the real line.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

Incidence matrix for the CS-PCD with vertices being 1D data set, Xp, and Yp determines the end
points of the intervals (the multi-interval case)

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

inci.matCS1D, inci.matPEtri, and inci.matPE

inci.matCSint 259

Examples

t<-2
c<-.4
a<-0; b<-10;
nx<-10; ny<-4

set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)

IM<-inci.matCS1D(Xp,Yp,t,c)
IM
dom.num.greedy(IM)

dom.num.exact(IM) #might take a long time depending on nx

Idom.num.up.bnd(IM,5)

Arcs<-arcsCS1D(Xp,Yp,t,c)
Arcs
summary(Arcs)
plot(Arcs)

inci.matCS1D(Xp,Yp+10,t,c)

t<-2
c<-.4
a<-0; b<-10;
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)

inci.matCS1D(Xp,Yp,t,c)

inci.matCSint Incidence matrix for Central Similarity Proximity Catch Digraphs
(CS-PCDs) for 1D data - one interval case

Description

Returns the incidence matrix for the CS-PCD for a given 1D numerical data set, Xp, as the vertices
of the digraph and int determines the end points of the interval (in the one interval case). Loops
are allowed, so the diagonal entries are all equal to 1.

CS proximity region is constructed with an expansion parameter t > 0 and a centrality parameter
c ∈ (0, 1).

See also (Ceyhan (2016)).

260 inci.matCSint

Usage

inci.matCSint(Xp, int, t, c = 0.5)

Arguments

Xp a set of 1D points which constitutes the vertices of the digraph.

int A vector of two real numbers representing an interval.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

Incidence matrix for the CS-PCD with vertices being 1D data set, Xp, and int determines the end
points of the intervals (in the one interval case)

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

inci.matCS1D, inci.matPE1D, inci.matPEtri, and inci.matPE

Examples

Not run:
c<-.4
t<-1
a<-0; b<-10; int<-c(a,b)

xf<-(int[2]-int[1])*.1

set.seed(123)

n<-10
Xp<-runif(n,a-xf,b+xf)

IM<-inci.matCSint(Xp,int,t,c)
IM

dom.num.greedy(IM)
Idom.num.up.bnd(IM,3)

inci.matCSstd.tri 261

dom.num.exact(IM)

inci.matCSint(Xp,int+10,t,c)

End(Not run)

inci.matCSstd.tri Incidence matrix for Central Similarity Proximity Catch Digraphs
(CS-PCDs) - standard equilateral triangle case

Description

Returns the incidence matrix for the CS-PCD whose vertices are the given 2D numerical data set, Xp,
in the standard equilateral triangle Te = T (v = 1, v = 2, v = 3) = T ((0, 0), (1, 0), (1/2,

√
3/2)).

CS proximity region is defined with respect to the standard equilateral triangle Te = T (v = 1, v =
2, v = 3) = T ((0, 0), (1, 0), (1/2,

√
3/2)) and edge regions are based on the center M = (m1,m2)

in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of Te; default is
M = (1, 1, 1) i.e., the center of mass of Te. Loops are allowed, so the diagonal entries are all equal
to 1.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

inci.matCSstd.tri(Xp, t, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of the CS-PCD.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates.
which serves as a center in the interior of the standard equilateral triangle Te;
default is M = (1, 1, 1) i.e. the center of mass of Te.

Value

Incidence matrix for the CS-PCD with vertices being 2D data set, Xp and CS proximity regions are
defined in the standard equilateral triangle Te with M-edge regions.

Author(s)

Elvan Ceyhan

262 inci.matCStri

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

inci.matCStri, inci.matCS and inci.matPEstd.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

inc.mat<-inci.matCSstd.tri(Xp,t=1.25,M)
inc.mat
sum(inc.mat)-n
num.arcsCSstd.tri(Xp,t=1.25)

dom.num.greedy(inc.mat) #try also dom.num.exact(inc.mat) #might take a long time for large n
Idom.num.up.bnd(inc.mat,1)

End(Not run)

inci.matCStri Incidence matrix for Central Similarity Proximity Catch Digraphs
(CS-PCDs) - one triangle case

Description

Returns the incidence matrix for the CS-PCD whose vertices are the given 2D numerical data set,
Xp, in the triangle tri= T (v = 1, v = 2, v = 3).

CS proximity regions are constructed with respect to triangle tri with expansion parameter t > 0
and edge regions are based on the center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ)

inci.matCStri 263

in barycentric coordinates in the interior of the triangle tri; default is M = (1, 1, 1) i.e., the center
of mass of tri. Loops are allowed, so the diagonal entries are all equal to 1.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

inci.matCStri(Xp, tri, t, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of CS-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri; default is M =
(1, 1, 1) i.e., the center of mass of tri.

Value

Incidence matrix for the CS-PCD with vertices being 2D data set, Xp, in the triangle tri with edge
regions based on center M

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

inci.matCS, inci.matPEtri, and inci.matAStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);

Tr<-rbind(A,B,C);

264 inci.matPE

n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

IM<-inci.matCStri(Xp,Tr,t=1.25,M)
IM
dom.num.greedy(IM) #try also dom.num.exact(IM)
Idom.num.up.bnd(IM,3)

inci.matCStri(Xp,Tr,t=1.5,M)

End(Not run)

inci.matPE Incidence matrix for Proportional Edge Proximity Catch Digraphs
(PE-PCDs) - multiple triangle case

Description

Returns the incidence matrix of Proportional Edge Proximity Catch Digraph (PE-PCD) whose ver-
tices are the data points in Xp in the multiple triangle case.

PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with ex-
pansion parameter r ≥ 1 and vertex regions in each triangle are based on the center M = (α, β, γ)
in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of each
Delaunay triangle (default for M = (1, 1, 1) which is the center of mass of the triangle).

Each Delaunay triangle is first converted to an (nonscaled) basic triangle so that M will be the same
type of center for each Delaunay triangle (this conversion is not necessary when M is CM).

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For
the incidence matrix loops are allowed, so the diagonal entries are all equal to 1.

See (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)) for more on the PE-PCDs. Also, see
(Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the
corresponding algorithm.

Usage

inci.matPE(Xp, Yp, r, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

inci.matPE 265

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 3D point in barycentric coordinates which serves as a center in the interior
of each Delaunay triangle or circumcenter of each Delaunay triangle (for this,
argument should be set as M="CC"), default for M = (1, 1, 1) which is the center
of mass of each triangle.

Value

Incidence matrix for the PE-PCD with vertices being 2D data set, Xp. PE proximity regions are
constructed with respect to the Delaunay triangles and M-vertex regions.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

inci.matPEtri, inci.matPEstd.tri, inci.matAS, and inci.matCS

Examples

Not run:
nx<-20; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))

266 inci.matPE1D

#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)

r<-1.5 #try also r<-2

IM<-inci.matPE(Xp,Yp,r,M)
IM
dom.num.greedy(IM)
#try also dom.num.exact(IM)
#might take a long time in this brute-force fashion ignoring the
#disconnected nature of the digraph inherent by the geometric construction of it

End(Not run)

inci.matPE1D Incidence matrix for Proportional-Edge Proximity Catch Digraphs
(PE-PCDs) for 1D data - multiple interval case

Description

Returns the incidence matrix for the PE-PCD for a given 1D numerical data set, Xp, as the vertices
of the digraph and Yp determines the end points of the intervals (in the multi-interval case). Loops
are allowed, so the diagonal entries are all equal to 1.

PE proximity region is constructed with an expansion parameter r ≥ 1 and a centrality parameter
c ∈ (0, 1).

See also (Ceyhan (2012)).

Usage

inci.matPE1D(Xp, Yp, r, c = 0.5)

Arguments

Xp a set of 1D points which constitutes the vertices of the digraph.

Yp a set of 1D points which constitutes the end points of the intervals that partition
the real line.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, (a, b), the parameterized center is Mc =
a+ c(b− a).

Value

Incidence matrix for the PE-PCD with vertices being 1D data set, Xp, and Yp determines the end
points of the intervals (in the multi-interval case)

inci.matPEint 267

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

inci.matCS1D, inci.matPEtri, and inci.matPE

Examples

Not run:
r<-2
c<-.4
a<-0; b<-10;
nx<-10; ny<-4

set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)

IM<-inci.matPE1D(Xp,Yp,r,c)
IM

dom.num.greedy(IM)
Idom.num.up.bnd(IM,6)
dom.num.exact(IM)

End(Not run)

inci.matPEint Incidence matrix for Proportional-Edge Proximity Catch Digraphs
(PE-PCDs) for 1D data - one interval case

Description

Returns the incidence matrix for the PE-PCD for a given 1D numerical data set, Xp, as the vertices
of the digraph and int determines the end points of the interval (in the one interval case). Loops
are allowed, so the diagonal entries are all equal to 1.

PE proximity region is constructed with an expansion parameter r ≥ 1 and a centrality parameter
c ∈ (0, 1).

See also (Ceyhan (2012)).

268 inci.matPEint

Usage

inci.matPEint(Xp, int, r, c = 0.5)

Arguments

Xp a set of 1D points which constitutes the vertices of the digraph.

int A vector of two real numbers representing an interval.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

Incidence matrix for the PE-PCD with vertices being 1D data set, Xp, and int determines the end
points of the intervals (in the one interval case)

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

inci.matCSint, inci.matPE1D, inci.matPEtri, and inci.matPE

Examples

Not run:
c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

xf<-(int[2]-int[1])*.1

set.seed(123)

n<-10
Xp<-runif(n,a-xf,b+xf)

IM<-inci.matPEint(Xp,int,r,c)
IM

dom.num.greedy(IM)
Idom.num.up.bnd(IM,6)

inci.matPEstd.tri 269

dom.num.exact(IM)

inci.matPEint(Xp,int+10,r,c)

End(Not run)

inci.matPEstd.tri Incidence matrix for Proportional Edge Proximity Catch Digraphs
(PE-PCDs) - standard equilateral triangle case

Description

Returns the incidence matrix for the PE-PCD whose vertices are the given 2D numerical data set, Xp,
in the standard equilateral triangle Te = T (v = 1, v = 2, v = 3) = T ((0, 0), (1, 0), (1/2,

√
3/2)).

PE proximity region is constructed with respect to the standard equilateral triangle Te with expan-
sion parameter r ≥ 1 and vertex regions are based on the center M = (m1,m2) in Cartesian coor-
dinates or M = (α, β, γ) in barycentric coordinates in the interior of Te; default is M = (1, 1, 1),
i.e., the center of mass of Te. Loops are allowed, so the diagonal entries are all equal to 1.

See also (Ceyhan (2005, 2010)).

Usage

inci.matPEstd.tri(Xp, r, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle Te;
default is M = (1, 1, 1) i.e. the center of mass of Te.

Value

Incidence matrix for the PE-PCD with vertices being 2D data set, Xp in the standard equilateral
triangle where PE proximity regions are defined with M-vertex regions.

Author(s)

Elvan Ceyhan

270 inci.matPEtetra

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

See Also

inci.matPEtri, inci.matPE, and inci.matCSstd.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-10

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

inc.mat<-inci.matPEstd.tri(Xp,r=1.25,M)
inc.mat
sum(inc.mat)-n
num.arcsPEstd.tri(Xp,r=1.25)

dom.num.greedy(inc.mat)
Idom.num.up.bnd(inc.mat,2) #try also dom.num.exact(inc.mat)

End(Not run)

inci.matPEtetra Incidence matrix for Proportional Edge Proximity Catch Digraphs
(PE-PCDs) - one tetrahedron case

Description

Returns the incidence matrix for the PE-PCD whose vertices are the given 3D numerical data set,
Xp, in the tetrahedron th = T (v = 1, v = 2, v = 3, v = 4).

PE proximity regions are constructed with respect to tetrahedron th with expansion parameter r ≥ 1
and vertex regions are based on the center M which is circumcenter ("CC") or center of mass ("CM")
of th with default="CM". Loops are allowed, so the diagonal entries are all equal to 1.

inci.matPEtetra 271

See also (Ceyhan (2005, 2010)).

Usage

inci.matPEtetra(Xp, th, r, M = "CM")

Arguments

Xp A set of 3D points which constitute the vertices of PE-PCD.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

Value

Incidence matrix for the PE-PCD with vertices being 3D data set, Xp, in the tetrahedron th with
vertex regions based on circumcenter or center of mass

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

inci.matPEtri, inci.matPE1D, and inci.matPE

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-5

Xp<-runif.tetra(n,tetra)$g #try also Xp<-c(.5,.5,.5)

M<-"CM" #try also M<-"CC"
r<-1.5

272 inci.matPEtri

IM<-inci.matPEtetra(Xp,tetra,r=1.25) #uses the default M="CM"
IM<-inci.matPEtetra(Xp,tetra,r=1.25,M)
IM
dom.num.greedy(IM)
Idom.num.up.bnd(IM,3) #try also dom.num.exact(IM) #this might take a long time for large n

End(Not run)

inci.matPEtri Incidence matrix for Proportional Edge Proximity Catch Digraphs
(PE-PCDs) - one triangle case

Description

Returns the incidence matrix for the PE-PCD whose vertices are the given 2D numerical data set,
Xp, in the triangle tri= T (v = 1, v = 2, v = 3).

PE proximity regions are constructed with respect to triangle tri with expansion parameter r ≥
1 and vertex regions are based on the center M = (m1,m2) in Cartesian coordinates or M =
(α, β, γ) in barycentric coordinates in the interior of the triangle tri; default is M = (1, 1, 1), i.e.,
the center of mass of tri. Loops are allowed, so the diagonal entries are all equal to 1.

See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)).

Usage

inci.matPEtri(Xp, tri, r, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of PE-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; default is M = (1, 1, 1), i.e., the
center of mass of tri.

Value

Incidence matrix for the PE-PCD with vertices being 2D data set, Xp, in the triangle tri with vertex
regions based on center M

Author(s)

Elvan Ceyhan

index.six.Te 273

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

inci.matPE, inci.matCStri, and inci.matAStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)
IM<-inci.matPEtri(Xp,Tr,r=1.25,M)

IM
dom.num.greedy(IM) #try also dom.num.exact(IM)
Idom.num.up.bnd(IM,3)

End(Not run)

index.six.Te Region index inside the Gamma-1 region

Description

Returns the region index of the point p for the 6 regions in standard equilateral triangle Te =
T ((0, 0), (1, 0), (1/2,

√
3/2)), starting with 1 on the first one-sixth of the triangle, and numbering

follows the counter-clockwise direction (see the plot in the examples). These regions are in the
inner hexagon which is the Gamma-1 region for CS-PCD with t = 1 if p is not in any of the 6
regions the function returns NA.

274 index.six.Te

Usage

index.six.Te(p)

Arguments

p A 2D point whose index for the 6 regions in standard equilateral triangle Te is
determined.

Value

rel An integer between 1-6 (inclusive) or NA

Author(s)

Elvan Ceyhan

See Also

runif.std.tri.onesixth

Examples

Not run:
P<-c(.4,.2)
index.six.Te(P)

A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)
CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

h1<-c(1/2,sqrt(3)/18); h2<-c(2/3, sqrt(3)/9); h3<-c(2/3, 2*sqrt(3)/9);
h4<-c(1/2, 5*sqrt(3)/18); h5<-c(1/3, 2*sqrt(3)/9); h6<-c(1/3, sqrt(3)/9);

r1<-(h1+h6+CM)/3;r2<-(h1+h2+CM)/3;r3<-(h2+h3+CM)/3;
r4<-(h3+h4+CM)/3;r5<-(h4+h5+CM)/3;r6<-(h5+h6+CM)/3;

Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
L<-Te; R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
polygon(rbind(h1,h2,h3,h4,h5,h6))

txt<-rbind(h1,h2,h3,h4,h5,h6)
xc<-txt[,1]+c(-.02,.02,.02,0,0,0)

intersect.line.circle 275

yc<-txt[,2]+c(.02,.02,.02,0,0,0)
txt.str<-c("h1","h2","h3","h4","h5","h6")
text(xc,yc,txt.str)

txt<-rbind(Te,CM,r1,r2,r3,r4,r5,r6)
xc<-txt[,1]+c(-.02,.02,.02,0,0,0,0,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,0,0,0,0,0,0,0)
txt.str<-c("A","B","C","CM","1","2","3","4","5","6")
text(xc,yc,txt.str)

n<-10 #try also n<-40
Xp<-runif.std.tri(n)$gen.points

Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

rsix<-vector()
for (i in 1:n)

rsix<-c(rsix,index.six.Te(Xp[i,]))
rsix

plot(A,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp,pch=".")
L<-Te; R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
polygon(rbind(h1,h2,h3,h4,h5,h6))
text(Xp,labels=factor(rsix))

txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.02,.02,.02,0)
yc<-txt[,2]+c(.02,.02,.02,-.05)
txt.str<-c("A","B","C","CM")
text(xc,yc,txt.str)

End(Not run)

intersect.line.circle The points of intersection of a line and a circle

Description

Returns the intersection point(s) of a line and a circle. The line is determined by the two points p1
and p2 and the circle is centered at point cent and has radius rad. If the circle does not intersect
the line, the function yields NULL; if the circle intersects at only one point, it yields only that point;
otherwise it yields both intersection points as output. When there are two intersection points, they
are listed in the order of the x-coordinates of p1 and p2; and if the x-coordinates of p1 and p2 are
equal, intersection points are listed in the order of y-coordinates of p1 and p2.

276 intersect.line.circle

Usage

intersect.line.circle(p1, p2, cent, rad)

Arguments

p1, p2 2D points that determine the straight line (i.e., through which the straight line
passes).

cent A 2D point representing the center of the circle.

rad A positive real number representing the radius of the circle.

Value

point(s) of intersection between the circle and the line (if they do not intersect, the function yields
NULL as the output)

Author(s)

Elvan Ceyhan

See Also

intersect2lines

Examples

Not run:
P1<-c(.3,.2)*100
P2<-c(.6,.3)*100
cent<-c(1.1,1.1)*100
rad<-2*100

intersect.line.circle(P1,P2,cent,rad)
intersect.line.circle(P2,P1,cent,rad)
intersect.line.circle(P1,P1+c(0,1),cent,rad)
intersect.line.circle(P1+c(0,1),P1,cent,rad)

dist.point2line(cent,P1,P2)
rad2<-dist.point2line(cent,P1,P2)$d
intersect.line.circle(P1,P2,cent,rad2)
intersect.line.circle(P1,P2,cent,rad=.8)
intersect.line.circle(P1,P2,cent,rad=.78)

#plot of the line and the circle
A<-c(.3,.2); B<-c(.6,.3); cent<-c(1,1); rad<-2 #check dist.point2line(cent,A,B)$dis, .3

IPs<-intersect.line.circle(A,B,cent,rad)

xr<-range(A[1],B[1],cent[1])
xf<-(xr[2]-xr[1])*.1 #how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-rad-xf,xr[2]+rad+xf,l=20) #try also l=100
lnAB<-Line(A,B,x)

intersect.line.plane 277

y<-lnAB$y

Xlim<-range(x,cent[1])
Ylim<-range(y,A[2],B[2],cent[2]-rad,cent[2]+rad)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(rbind(A,B,cent),pch=1,asp=1,xlab="x",ylab="y",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
lines(x,y,lty=1)
interp::circles(cent[1],cent[2],rad)
IP.txt<-c()
if (!is.null(IPs))
{

for (i in 1:(length(IPs)/2))
IP.txt<-c(IP.txt,paste("I",i, sep = ""))

}
txt<-rbind(A,B,cent,IPs)
text(txt+cbind(rep(xd*.03,nrow(txt)),rep(-yd*.03,nrow(txt))),c("A","B","M",IP.txt))

End(Not run)

intersect.line.plane The point of intersection of a line and a plane

Description

Returns the point of the intersection of the line determined by the 3D points p1 and p2 and the plane
spanned by 3D points p3, p4, and p5.

Usage

intersect.line.plane(p1, p2, p3, p4, p5)

Arguments

p1, p2 3D points that determine the straight line (i.e., through which the straight line
passes).

p3, p4, p5 3D points that determine the plane (i.e., through which the plane passes).

Value

The coordinates of the point of intersection the line determined by the 3D points p1 and p2 and the
plane determined by 3D points p3, p4, and p5.

Author(s)

Elvan Ceyhan

278 intersect.line.plane

See Also

intersect2lines and intersect.line.circle

Examples

Not run:
L1<-c(2,4,6); L2<-c(1,3,5);
A<-c(1,10,3); B<-c(1,1,3); C<-c(3,9,12)

Pint<-intersect.line.plane(L1,L2,A,B,C)
Pint
pts<-rbind(L1,L2,A,B,C,Pint)

tr<-max(Dist(L1,L2),Dist(L1,Pint),Dist(L2,Pint))
tf<-tr*1.1 #how far to go at the lower and upper ends
in the x-coordinate
tsq<-seq(-tf,tf,l=5) #try also l=10, 20, or 100

lnAB3D<-Line3D(L1,L2,tsq)
xl<-lnAB3D$x
yl<-lnAB3D$y
zl<-lnAB3D$z

xr<-range(pts[,1]); yr<-range(pts[,2])
xf<-(xr[2]-xr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*.1
#how far to go at the lower and upper ends in the y-coordinate
xp<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20, or 100
yp<-seq(yr[1]-yf,yr[2]+yf,l=5) #try also l=10, 20, or 100

plABC<-Plane(A,B,C,xp,yp)
z.grid<-plABC$z

res<-persp(xp,yp,z.grid, xlab="x",ylab="y",zlab="z",theta = -30,
phi = 30, expand = 0.5,
col = "lightblue", ltheta = 120, shade = 0.05, ticktype = "detailed")
lines (trans3d(xl, yl, zl, pmat = res), col = 3)

Xlim<-range(xl,pts[,1])
Ylim<-range(yl,pts[,2])
Zlim<-range(zl,pts[,3])

xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

plot3D::persp3D(z = z.grid, x = xp, y = yp, theta =225, phi = 30,
ticktype = "detailed"
,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),zlim=Zlim+zd*c(-.1,.1),
expand = 0.7, facets = FALSE, scale = TRUE)

#plane spanned by points A, B, C

intersect2lines 279

#add the defining points
plot3D::points3D(pts[,1],pts[,2],pts[,3], pch = ".", col = "black",
bty = "f", cex = 5,add=TRUE)
plot3D::points3D(Pint[1],Pint[2],Pint[3], pch = "*", col = "red",
bty = "f", cex = 5,add=TRUE)
plot3D::lines3D(xl, yl, zl, bty = "g", cex = 2,
ticktype = "detailed",add=TRUE)

End(Not run)

intersect2lines The point of intersection of two lines defined by two pairs of points

Description

Returns the intersection of two lines, first line passing through points p1 and q1 and second line
passing through points p2 and q2. The points are chosen so that lines are well defined.

Usage

intersect2lines(p1, q1, p2, q2)

Arguments

p1, q1 2D points that determine the first straight line (i.e., through which the first
straight line passes).

p2, q2 2D points that determine the second straight line (i.e., through which the second
straight line passes).

Value

The coordinates of the point of intersection of the two lines, first passing through points p1 and q1
and second passing through points p2 and q2.

Author(s)

Elvan Ceyhan

See Also

intersect.line.circle and dist.point2line

280 interval.indices.set

Examples

Not run:
A<-c(-1.22,-2.33); B<-c(2.55,3.75); C<-c(0,6); D<-c(3,-2)

ip<-intersect2lines(A,B,C,D)
ip
pts<-rbind(A,B,C,D,ip)
xr<-range(pts[,1])
xf<-abs(xr[2]-xr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20, or 100
lnAB<-Line(A,B,x)
lnCD<-Line(C,D,x)

y1<-lnAB$y
y2<-lnCD$y
Xlim<-range(x,pts)
Ylim<-range(y1,y2,pts)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
pf<-c(xd,-yd)*.025

#plot of the line joining A and B
plot(rbind(A,B,C,D),pch=1,xlab="x",ylab="y",
main="Point of Intersection of Two Lines",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
lines(x,y1,lty=1,col=1)
lines(x,y2,lty=1,col=2)
text(rbind(A+pf,B+pf),c("A","B"))
text(rbind(C+pf,D+pf),c("C","D"))
text(rbind(ip+pf),c("intersection\n point"))

End(Not run)

interval.indices.set Indices of the intervals where the 1D point(s) reside

Description

Returns the indices of intervals for all the points in 1D data set, Xp, as a vector.

Intervals are based on Yp and left end interval is labeled as 1, the next interval as 2, and so on.

Usage

interval.indices.set(Xp, Yp)

is.in.data 281

Arguments

Xp A set of 1D points for which the indices of intervals are to be determined.
Yp A set of 1D points from which intervals are constructed.

Value

The vector of indices of the intervals in which points in the 1D data set, Xp, reside

Author(s)

Elvan Ceyhan

Examples

Not run:
a<-0; b<-10; int<-c(a,b)

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xf<-(int[2]-int[1])*.1
Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b) #try also Yp<-runif(ny,a+1,b-1)

ind<-interval.indices.set(Xp,Yp)
ind

jit<-.1
yjit<-runif(nx,-jit,jit)

Xlim<-range(a,b,Xp,Yp)
xd<-Xlim[2]-Xlim[1]

plot(cbind(a,0), xlab=" ", ylab=" ",xlim=Xlim+xd*c(-.05,.05),ylim=3*c(-jit,jit),pch=".")
abline(h=0)
points(Xp, yjit,pch=".",cex=3)
abline(v=Yp,lty=2)
text(Xp,yjit,labels=factor(ind))

End(Not run)

is.in.data Check a point belong to a given data set

Description

returns TRUE if the point p of any dimension is inside the data set Xp of the same dimension as p;
otherwise returns FALSE.

282 is.in.data

Usage

is.in.data(p, Xp)

Arguments

p A 2D point for which the function checks membership to the data set Xp.

Xp A set of 2D points representing the set of data points.

Value

TRUE if p belongs to the data set Xp.

Author(s)

Elvan Ceyhan

Examples

Not run:
n<-10
Xp<-cbind(runif(n),runif(n))

P<-Xp[7,]
is.in.data(P,Xp)
is.in.data(P,Xp[7,])

P<-Xp[7,]+10^(-7)
is.in.data(P,Xp)

P<-Xp[7,]+10^(-9)
is.in.data(P,Xp)

is.in.data(P,P)

is.in.data(c(2,2),c(2,2))

#for 1D data
n<-10
Xp<-runif(n)

P<-Xp[7]
is.in.data(P,Xp[7]) #this works because both entries are treated as 1D vectors but
#is.in.data(P,Xp) does not work since entries are treated as vectors of different dimensions

Xp<-as.matrix(Xp)
is.in.data(P,Xp)
#this works, because P is a 1D point, and Xp is treated as a set of 10 1D points

P<-Xp[7]+10^(-7)
is.in.data(P,Xp)

is.point 283

P<-Xp[7]+10^(-9)
is.in.data(P,Xp)

is.in.data(P,P)

#for 3D data
n<-10
Xp<-cbind(runif(n),runif(n),runif(n))

P<-Xp[7,]
is.in.data(P,Xp)
is.in.data(P,Xp[7,])

P<-Xp[7,]+10^(-7)
is.in.data(P,Xp)

P<-Xp[7,]+10^(-9)
is.in.data(P,Xp)

is.in.data(P,P)

n<-10
Xp<-cbind(runif(n),runif(n))
P<-Xp[7,]
is.in.data(P,Xp)

End(Not run)

is.point Check the argument is a point of a given dimension

Description

Returns TRUE if the argument p is a numeric point of dimension dim (default is dim=2); otherwise
returns FALSE.

Usage

is.point(p, dim = 2)

Arguments

p A vector to be checked to see it is a point of dimension dim or not.

dim A positive integer representing the dimension of the argument p.

Value

TRUE if p is a vector of dimension dim.

284 is.std.eq.tri

Author(s)

Elvan Ceyhan

See Also

dimension

Examples

Not run:
A<-c(-1.22,-2.33); B<-c(2.55,3.75,4)
is.point(A)
is.point(A,1)

is.point(B)
is.point(B,3)

End(Not run)

is.std.eq.tri Check whether a triangle is a standard equilateral triangle

Description

Checks whether the triangle, tri, is the standard equilateral triangle Te = T ((0, 0), (1, 0), (1/2,
√
3/2))

or not.

Usage

is.std.eq.tri(tri)

Arguments

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

TRUE if tri is a standard equilateral triangle, else FALSE.

Author(s)

Elvan Ceyhan

kfr2vertsCCvert.reg 285

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C) #try adding +10^(-16) to each vertex
is.std.eq.tri(Te)

is.std.eq.tri(rbind(B,C,A))

Tr<-rbind(A,B,-C)
is.std.eq.tri(Tr)

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
is.std.eq.tri(Tr)

End(Not run)

kfr2vertsCCvert.reg The k furthest points in a data set from vertices in each CC-vertex
region in a triangle

Description

An object of class "Extrema". Returns the k furthest data points among the data set, Xp, in each
CC-vertex region from the vertex in the triangle, tri= T (A,B,C), vertices are stacked row-wise.
Vertex region labels/numbers correspond to the row number of the vertex in tri.

ch.all.intri is for checking whether all data points are inside tri (default is FALSE). If some
of the data points are not inside tri and ch.all.intri=TRUE, then the function yields an error
message. If some of the data points are not inside tri and ch.all.intri=FALSE, then the function
yields the closest points to edges among the data points inside tri (yields NA if there are no data
points inside tri).

In the extrema, ext, in the output, the first k entries are the k furthest points from vertex 1, second
k entries are k furthest points are from vertex 2, and last k entries are the k furthest points from
vertex 3. If data size does not allow, NA’s are inserted for some or all of the k furthest points for
each vertex.

Usage

kfr2vertsCCvert.reg(Xp, tri, k, ch.all.intri = FALSE)

Arguments

Xp A set of 2D points representing the set of data points.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

k A positive integer. k furthest data points in each CC-vertex region are to be
found if exists, else NA are provided for (some of) the k furthest points.

286 kfr2vertsCCvert.reg

ch.all.intri A logical argument (default=FALSE) to check whether all data points are inside
the triangle tri. So, if it is TRUE, the function checks if all data points are inside
the closure of the triangle (i.e., interior and boundary combined) else it does not.

Value

A list with the elements

txt1 Vertex labels are A = 1, B = 2, and C = 3 (correspond to row number in
Extremum Points).

txt2 A shorter description of the distances as "Distances of k furthest points in
the vertex regions to Vertices".

type Type of the extrema points

desc A short description of the extrema points

mtitle The "main" title for the plot of the extrema

ext The extrema points, here, k furthest points from vertices in each CC-vertex
region in the triangle tri.

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, it is tri for this function.

cent The center point used for construction of vertex regions

ncent Name of the center, cent, it is circumcenter "CC" for this function.

regions Vertex regions inside the triangle, tri, provided as a list

region.names Names of the vertex regions as "vr=1", "vr=2", and "vr=3"

region.centers Centers of mass of the vertex regions inside Tb.

dist2ref Distances from k furthest points in each vertex region to the corresponding ver-
tex (each row representing a vertex in tri). Among the distances the first k
entries are the distances from the k furthest points from vertex 1 to vertex 1,
second k entries are distances from the k furthest points from vertex 2 to vertex
2, and the last k entries are the distances from the k furthest points from vertex
3 to vertex 3.

Author(s)

Elvan Ceyhan

See Also

fr2vertsCCvert.reg.basic.tri, fr2vertsCCvert.reg.basic.tri, fr2vertsCCvert.reg, and
fr2edgesCMedge.reg.std.tri

Line 287

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20
k<-3

set.seed(1)
Xp<-runif.tri(n,Tr)$g

Ext<-kfr2vertsCCvert.reg(Xp,Tr,k)
Ext
summary(Ext)
plot(Ext)

Xp2<-rbind(Xp,c(.2,.4))
kfr2vertsCCvert.reg(Xp2,Tr,k)
#try also kfr2vertsCCvert.reg(Xp2,Tr,k,ch.all.intri = TRUE)

kf2v<-Ext

CC<-circumcenter.tri(Tr) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",asp=1,xlab="",ylab="",
main=paste(k," Furthest Points in CC-Vertex Regions \n from the Vertices",sep=""),
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
points(Xp)
points(kf2v$ext,pch=4,col=2)

txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.06,.08,.05,.12,-.1,-.1,-.09)
yc<-txt[,2]+c(.02,-.02,.04,.0,.02,.06,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

Line The line joining two distinct 2D points a and b

288 Line

Description

An object of class "Lines". Returns the equation, slope, intercept, and y-coordinates of the
line crossing two distinct 2D points a and b with x-coordinates provided in vector x.

This function is different from the line function in the standard stats package in R in the sense
that Line(a,b,x) fits the line passing through points a and b and returns various quantities (see
below) for this line and x is the x-coordinates of the points we want to find on the Line(a,b,x)
while line(a,b) fits the line robustly whose x-coordinates are in a and y-coordinates are in b.

Line(a,b,x) and line(x,Line(A,B,x)$y) would yield the same straight line (i.e., the line with
the same coefficients.)

Usage

Line(a, b, x)

Arguments

a, b 2D points that determine the straight line (i.e., through which the straight line
passes).

x A scalar or a vector of scalars representing the x-coordinates of the line.

Value

A list with the elements

desc A description of the line

mtitle The "main" title for the plot of the line

points The input points a and b through which the straight line passes (stacked row-
wise, i.e., row 1 is point a and row 2 is point b).

x The input scalar or vector which constitutes the x-coordinates of the point(s)
of interest on the line.

y The output scalar or vector which constitutes the y-coordinates of the point(s)
of interest on the line. If x is a scalar, then y will be a scalar and if x is a vector
of scalars, then y will be a vector of scalars.

slope Slope of the line, Inf is allowed, passing through points a and b

intercept Intercept of the line passing through points a and b

equation Equation of the line passing through points a and b

Author(s)

Elvan Ceyhan

See Also

slope, paraline, perpline, line in the generic stats package and and Line3D

Line3D 289

Examples

Not run:
A<-c(-1.22,-2.33); B<-c(2.55,3.75)

xr<-range(A,B);
xf<-(xr[2]-xr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20, or 100

lnAB<-Line(A,B,x)
lnAB
summary(lnAB)
plot(lnAB)

line(A,B)
#this takes vector A as the x points and vector B as the y points and fits the line
#for example, try
x=runif(100); y=x+(runif(100,-.05,.05))
plot(x,y)
line(x,y)

x<-lnAB$x
y<-lnAB$y
Xlim<-range(x,A,B)
if (!is.na(y[1])) {Ylim<-range(y,A,B)} else {Ylim<-range(A,B)}
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
pf<-c(xd,-yd)*.025

#plot of the line joining A and B
plot(rbind(A,B),pch=1,xlab="x",ylab="y",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
if (!is.na(y[1])) {lines(x,y,lty=1)} else {abline(v=A[1])}
text(rbind(A+pf,B+pf),c("A","B"))
int<-round(lnAB$intercep,2) #intercept
sl<-round(lnAB$slope,2) #slope
text(rbind((A+B)/2+pf*3),ifelse(is.na(int),paste("x=",A[1]),
ifelse(sl==0,paste("y=",int),
ifelse(sl==1,ifelse(sign(int)<0,paste("y=x",int),paste("y=x+",int)),
ifelse(sign(int)<0,paste("y=",sl,"x",int),paste("y=",sl,"x+",int))))))

End(Not run)

Line3D The line crossing 3D point p in the direction of vector v (or if v is a
point, in direction of v − r_0)

290 Line3D

Description

An object of class "Lines3D". Returns the equation, x-, y-, and z-coordinates of the line crossing
3D point r0 in the direction of vector v (of if v is a point, in the direction of v − r0) with the
parameter t being provided in vector t.

Usage

Line3D(p, v, t, dir.vec = TRUE)

Arguments

p A 3D point through which the straight line passes.

v A 3D vector which determines the direction of the straight line (i.e., the straight
line would be parallel to this vector) if the dir.vec=TRUE, otherwise it is 3D
point and v − r0 determines the direction of the the straight line.

t A scalar or a vector of scalars representing the parameter of the coordinates
of the line (for the form: x = p0 + at, y = y0 + bt, and z = z0 + ct where
r0 = (p0, y0, z0) and v = (a, b, c) if dir.vec=TRUE, else v − r0 = (a, b, c)).

dir.vec A logical argument about v, if TRUE v is treated as a vector, else v is treated as a
point and so the direction vector is taken to be v − r0.

Value

A list with the elements

desc A description of the line

mtitle The "main" title for the plot of the line

pts The input points that determine a line and/or a plane, NULL for this function.

pnames The names of the input points that determine a line and/or a plane, NULL for this
function.

vecs The point p and the vector v (if dir.vec=TRUE) or the point v (if dir.vec=FALSE).
The first row is p and the second row is v.

vec.names The names of the point p and the vector v (if dir.vec=TRUE) or the point v (if
dir.vec=FALSE).

x, y, z The x-, y-, and z-coordinates of the point(s) of interest on the line.

tsq The scalar or the vector of the parameter in defining each coordinate of the line
for the form: x = p0+at, y = y0+ bt, and z = z0+ ct where r0 = (p0, y0, z0)
and v = (a, b, c) if dir.vec=TRUE, else v − r0 = (a, b, c).

equation Equation of the line passing through point p in the direction of the vector v
(if dir.vec=TRUE) else in the direction of v − r0. The line equation is in the
form: x = p0 + at, y = y0 + bt, and z = z0 + ct where r0 = (p0, y0, z0) and
v = (a, b, c) if dir.vec=TRUE, else v − r0 = (a, b, c).

Author(s)

Elvan Ceyhan

Line3D 291

See Also

line, paraline3D, and Plane

Examples

Not run:
A<-c(1,10,3); B<-c(1,1,3);

vecs<-rbind(A,B)

Line3D(A,B,.1)
Line3D(A,B,.1,dir.vec=FALSE)

tr<-range(vecs);
tf<-(tr[2]-tr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf*10-tf,tf*10+tf,l=5) #try also l=10, 20, or 100

lnAB3D<-Line3D(A,B,tsq)
#try also lnAB3D<-Line3D(A,B,tsq,dir.vec=FALSE)
lnAB3D
summary(lnAB3D)
plot(lnAB3D)

x<-lnAB3D$x
y<-lnAB3D$y
z<-lnAB3D$z

zr<-range(z)
zf<-(zr[2]-zr[1])*.2
Bv<-B*tf*5

Xlim<-range(x)
Ylim<-range(y)
Zlim<-range(z)

xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

Dr<-A+min(tsq)*B

plot3D::lines3D(x, y, z, phi = 0, bty = "g",
main="Line Crossing A \n in the Direction of OB",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.1,.1),

pch = 20, cex = 2, ticktype = "detailed")
plot3D::arrows3D(Dr[1],Dr[2],Dr[3]+zf,Dr[1]+Bv[1],
Dr[2]+Bv[2],Dr[3]+zf+Bv[3], add=TRUE)
plot3D::points3D(A[1],A[2],A[3],add=TRUE)
plot3D::arrows3D(A[1],A[2],A[3]-2*zf,A[1],A[2],A[3],lty=2, add=TRUE)
plot3D::text3D(A[1],A[2],A[3]-2*zf,labels="initial point",add=TRUE)

292 NASbasic.tri

plot3D::text3D(A[1],A[2],A[3]+zf/2,labels=expression(r[0]),add=TRUE)
plot3D::arrows3D(Dr[1]+Bv[1]/2,Dr[2]+Bv[2]/2,Dr[3]+3*zf+Bv[3]/2,
Dr[1]+Bv[1]/2,Dr[2]+Bv[2]/2,Dr[3]+zf+Bv[3]/2,lty=2, add=TRUE)
plot3D::text3D(Dr[1]+Bv[1]/2,Dr[2]+Bv[2]/2,Dr[3]+3*zf+Bv[3]/2,
labels="direction vector",add=TRUE)
plot3D::text3D(Dr[1]+Bv[1]/2,Dr[2]+Bv[2]/2,
Dr[3]+zf+Bv[3]/2,labels="v",add=TRUE)
plot3D::text3D(0,0,0,labels="O",add=TRUE)

End(Not run)

NASbasic.tri The vertices of the Arc Slice (AS) Proximity Region in the standard
basic triangle

Description

Returns the end points of the line segments and arc-slices that constitute the boundary of AS prox-
imity region for a point in the standard basic triangle Tb = T ((0, 0), (1, 0), (c1, c2)) where c1 is in
[0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Vertex regions are based on the center M="CC" for circumcenter of Tb; or M = (m1,m2) in Carte-
sian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of Tb; default is M="CC"
the circumcenter of Tb. rv is the index of the vertex region p resides, with default=NULL.

If p is outside Tb, it returns NULL for the proximity region. dec is the number of decimals (default is
4) to round the barycentric coordinates when checking whether the end points fall on the boundary
of the triangle Tb or not (so as not to miss the intersection points due to precision in the decimals).

Any given triangle can be mapped to the standard basic triangle by a combination of rigid body
motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the points
in the original triangle. Hence standard basic triangle is useful for simulation studies under the
uniformity hypothesis.

See also (Ceyhan (2005, 2010)).

Usage

NASbasic.tri(p, c1, c2, M = "CC", rv = NULL, dec = 4)

Arguments

p A 2D point whose AS proximity region is to be computed.

c1, c2 Positive real numbers representing the top vertex in standard basic triangle Tb =
T ((0, 0), (1, 0), (c1, c2)), c1 must be in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

M The center of the triangle. "CC" stands for circumcenter of the triangle Tb or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle Tb; default is M="CC" i.e.,
the circumcenter of Tb.

NASbasic.tri 293

rv The index of the M-vertex region containing the point, either 1,2,3 or NULL
(default is NULL).

dec a positive integer the number of decimals (default is 4) to round the barycentric
coordinates when checking whether the end points fall on the boundary of the
triangle Tb or not.

Value

A list with the elements

L, R The end points of the line segments on the boundary of the AS proximity region.
Each row in L and R constitute a line segment on the boundary.

Arc.Slices The end points of the arc-slices on the circular parts of the AS proximity region.
Here points in row 1 and row 2 constitute the end points of one arc-slice, points
on row 3 and row 4 constitute the end points for the next arc-slice and so on.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

NAStri and IarcASbasic.tri

Examples

Not run:
c1<-.4; c2<-.6 #try also c1<-.2; c2<-.2;
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C)

set.seed(1)
M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)

P1<-as.numeric(runif.basic.tri(1,c1,c2)$g); #try also P1<-c(.3,.2)
NASbasic.tri(P1,c1,c2) #default with M="CC"
NASbasic.tri(P1,c1,c2,M)

294 NASbasic.tri

#or try
Rv<-rel.vert.basic.triCC(P1,c1,c2)$rv
NASbasic.tri(P1,c1,c2,M,Rv)

NASbasic.tri(c(3,5),c1,c2,M)

P2<-c(.5,.4)
NASbasic.tri(P2,c1,c2,M)

P3<-c(1.5,.4)
NASbasic.tri(P3,c1,c2,M)

if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates

#plot of the NAS region
P1<-as.numeric(runif.basic.tri(1,c1,c2)$g);
CC<-circumcenter.basic.tri(c1,c2)

if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
rv<-rel.vert.basic.triCC(P1,c1,c2)$rv
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges.basic.tri(c1,c2,M)
rv<-rel.vert.basic.tri(P1,c1,c2,M)$rv
}
RV<-Tb[rv,]
rad<-Dist(P1,RV)

Int.Pts<-NASbasic.tri(P1,c1,c2,M)

Xlim<-range(Tb[,1],P1[1]+rad,P1[1]-rad)
Ylim<-range(Tb[,2],P1[2]+rad,P1[2]-rad)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",asp=1,xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(rbind(Tb,P1,rbind(Int.Pts$L,Int.Pts$R)))
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
interp::circles(P1[1],P1[2],rad,lty=2)
L<-Int.Pts$L; R<-Int.Pts$R
segments(L[,1], L[,2], R[,1], R[,2], lty=1,col=2)
Arcs<-Int.Pts$a;
if (!is.null(Arcs))
{

NAStri 295

K<-nrow(Arcs)/2
for (i in 1:K)
{A1<-Arcs[2*i-1,]; A2<-Arcs[2*i,];
angles<-angle.str2end(A1,P1,A2)$c

plotrix::draw.arc(P1[1],P1[2],rad,angle1=angles[1],angle2=angles[2],col=2)
}

}

#proximity region with the triangle (i.e., for labeling the vertices of the NAS)
IP.txt<-intpts<-c()
if (!is.null(Int.Pts$a))
{
intpts<-unique(round(Int.Pts$a,7))
#this part is for labeling the intersection points of the spherical
for (i in 1:(length(intpts)/2))

IP.txt<-c(IP.txt,paste("I",i+1, sep = ""))
}
txt<-rbind(Tb,P1,cent,intpts)
txt.str<-c("A","B","C","P1",cent.name,IP.txt)
text(txt+cbind(rep(xd*.02,nrow(txt)),rep(-xd*.03,nrow(txt))),txt.str)

c1<-.4; c2<-.6;
P1<-c(.3,.2)
NASbasic.tri(P1,c1,c2,M)

End(Not run)

NAStri The vertices of the Arc Slice (AS) Proximity Region in a general trian-
gle

Description

Returns the end points of the line segments and arc-slices that constitute the boundary of AS prox-
imity region for a point in the triangle tri= T (A,B,C) =(rv=1,rv=2,rv=3).

Vertex regions are based on the center M="CC" for circumcenter of tri; or M = (m1,m2) in
Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of the triangle
tri; default is M="CC" the circumcenter of tri. rv is the index of the vertex region p1 resides, with
default=NULL.

If p is outside of tri, it returns NULL for the proximity region. dec is the number of decimals
(default is 4) to round the barycentric coordinates when checking the points fall on the boundary of
the triangle tri or not (so as not to miss the intersection points due to precision in the decimals).

See also (Ceyhan (2005, 2010)).

Usage

NAStri(p, tri, M = "CC", rv = NULL, dec = 4)

296 NAStri

Arguments

p A 2D point whose AS proximity region is to be computed.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a
2D point in Cartesian coordinates or a 3D point in barycentric coordinates which
serves as a center in the interior of the triangle tri; default is M="CC" i.e., the
circumcenter of tri.

rv Index of the M-vertex region containing the point p, either 1,2,3 or NULL (default
is NULL).

dec a positive integer the number of decimals (default is 4) to round the barycentric
coordinates when checking whether the end points fall on the boundary of the
triangle tri or not.

Value

A list with the elements

L, R End points of the line segments on the boundary of the AS proximity region.
Each row in L and R constitute a pair of points that determine a line segment on
the boundary.

arc.slices The end points of the arc-slices on the circular parts of the AS proximity region.
Here points in rows 1 and 2 constitute the end points of the first arc-slice, points
on rows 3 and 4 constitute the end points for the next arc-slice and so on.

Angles The angles (in radians) between the vectors joining arc slice end points to the
point p with the horizontal line crossing the point p

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

NASbasic.tri, NPEtri, NCStri and IarcAStri

NAStri 297

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(.6,.2)

P1<-as.numeric(runif.tri(1,Tr)$g) #try also P1<-c(1.3,1.2)
NAStri(P1,Tr,M)

#or try
Rv<-rel.vert.triCC(P1,Tr)$rv
NAStri(P1,Tr,M,Rv)

NAStri(c(3,5),Tr,M)

P2<-c(1.5,1.4)
NAStri(P2,Tr,M)

P3<-c(1.5,.4)
NAStri(P3,Tr,M)

if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates

CC<-circumcenter.tri(Tr) #the circumcenter

if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
rv<-rel.vert.triCC(P1,Tr)$rv
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
rv<-rel.vert.tri(P1,Tr,M)$rv
}
RV<-Tr[rv,]
rad<-Dist(P1,RV)

Int.Pts<-NAStri(P1,Tr,M)

#plot of the NAS region
Xlim<-range(Tr[,1],P1[1]+rad,P1[1]-rad)
Ylim<-range(Tr[,2],P1[2]+rad,P1[2]-rad)
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",asp=1,xlab="",ylab="",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
#asp=1 must be the case to have the arc properly placed in the figure

298 NCSint

polygon(Tr)
points(rbind(Tr,P1,rbind(Int.Pts$L,Int.Pts$R)))
L<-rbind(cent,cent,cent); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
interp::circles(P1[1],P1[2],rad,lty=2)
L<-Int.Pts$L; R<-Int.Pts$R
segments(L[,1], L[,2], R[,1], R[,2], lty=1,col=2)
Arcs<-Int.Pts$a;
if (!is.null(Arcs))
{

K<-nrow(Arcs)/2
for (i in 1:K)
{A1<-Int.Pts$arc[2*i-1,]; A2<-Int.Pts$arc[2*i,];
angles<-angle.str2end(A1,P1,A2)$c

test.ang1<-angles[1]+(.01)*(angles[2]-angles[1])
test.Pnt<-P1+rad*c(cos(test.ang1),sin(test.ang1))
if (!in.triangle(test.Pnt,Tr,boundary = TRUE)$i) {angles<-c(min(angles),max(angles)-2*pi)}
plotrix::draw.arc(P1[1],P1[2],rad,angle1=angles[1],angle2=angles[2],col=2)
}

}

#proximity region with the triangle (i.e., for labeling the vertices of the NAS)
IP.txt<-intpts<-c()
if (!is.null(Int.Pts$a))
{
intpts<-unique(round(Int.Pts$a,7))
#this part is for labeling the intersection points of the spherical
for (i in 1:(length(intpts)/2))
IP.txt<-c(IP.txt,paste("I",i+1, sep = ""))

}
txt<-rbind(Tr,P1,cent,intpts)
txt.str<-c("A","B","C","P1",cent.name,IP.txt)
text(txt+cbind(rep(xd*.02,nrow(txt)),rep(-xd*.03,nrow(txt))),txt.str)

P1<-c(.3,.2)
NAStri(P1,Tr,M)

End(Not run)

NCSint The end points of the Central Similarity (CS) Proximity Region for a
point - one interval case

Description

Returns the end points of the interval which constitutes the CS proximity region for a point in the
interval int= (a, b) =(rv=1,rv=2).

NCSint 299

CS proximity region is constructed with respect to the interval int with expansion parameter t > 0
and centrality parameter c ∈ (0, 1).

Vertex regions are based on the (parameterized) center, Mc, which is Mc = a + c(b − a) for the
interval, int= (a, b). The CS proximity region is constructed whether x is inside or outside the
interval int.

See also (Ceyhan (2016)).

Usage

NCSint(x, int, t, c = 0.5)

Arguments

x A 1D point for which CS proximity region is constructed.

int A vector of two real numbers representing an interval.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

The interval which constitutes the CS proximity region for the point x

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

NPEint and NCStri

Examples

c<-.4
t<-2
a<-0; b<-10; int<-c(a,b)

NCSint(7,int,t,c)
NCSint(17,int,t,c)
NCSint(1,int,t,c)
NCSint(-1,int,t,c)

300 NCStri

NCSint(3,int,t,c)
NCSint(4,int,t,c)
NCSint(a,int,t,c)

NCStri The vertices of the Central Similarity (CS) Proximity Region in a gen-
eral triangle

Description

Returns the vertices of the CS proximity region (which is itself a triangle) for a point in the triangle
tri= T (A,B,C) =(rv=1,rv=2,rv=3).

CS proximity region is defined with respect to the triangle tri with expansion parameter t > 0
and edge regions based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in
barycentric coordinates in the interior of the triangle tri; default is M = (1, 1, 1) i.e., the center of
mass of tri.

Edge regions are labeled as 1,2,3 rowwise for the corresponding vertices of the triangle tri. re is
the index of the edge region p resides, with default=NULL. If p is outside of tri, it returns NULL for
the proximity region.

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

NCStri(p, tri, t, M = c(1, 1, 1), re = NULL)

Arguments

p A 2D point whose CS proximity region is to be computed.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri; default is M =
(1, 1, 1) i.e., the center of mass of tri.

re Index of the M-edge region containing the point p, either 1,2,3 or NULL (default
is NULL).

Value

Vertices of the triangular region which constitutes the CS proximity region with expansion param-
eter t > 0 and center M for a point p

Author(s)

Elvan Ceyhan

NPEbasic.tri 301

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

NPEtri, NAStri, and IarcCStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
tau<-1.5

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

n<-3
set.seed(1)
Xp<-runif.tri(n,Tr)$g

NCStri(Xp[1,],Tr,tau,M)

P1<-as.numeric(runif.tri(1,Tr)$g) #try also P1<-c(.4,.2)
NCStri(P1,Tr,tau,M)

#or try
re<-rel.edges.tri(P1,Tr,M)$re
NCStri(P1,Tr,tau,M,re)

End(Not run)

NPEbasic.tri The vertices of the Proportional Edge (PE) Proximity Region in a stan-
dard basic triangle

Description

Returns the vertices of the PE proximity region (which is itself a triangle) for a point in the standard
basic triangle Tb = T ((0, 0), (1, 0), (c1, c2)) =(rv=1,rv=2,rv=3).

302 NPEbasic.tri

PE proximity region is defined with respect to the standard basic triangle Tb with expansion pa-
rameter r ≥ 1 and vertex regions based on center M = (m1,m2) in Cartesian coordinates or
M = (α, β, γ) in barycentric coordinates in the interior of the basic triangle Tb or based on the
circumcenter of Tb; default is M = (1, 1, 1), i.e., the center of mass of Tb.

Vertex regions are labeled as 1, 2, 3 rowwise for the vertices of the triangle Tb. rv is the index of the
vertex region p resides, with default=NULL. If p is outside of tri, it returns NULL for the proximity
region.

See also (Ceyhan (2005, 2010)).

Usage

NPEbasic.tri(p, r, c1, c2, M = c(1, 1, 1), rv = NULL)

Arguments

p A 2D point whose PE proximity region is to be computed.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c1, c2 Positive real numbers representing the top vertex in standard basic triangle Tb =
T ((0, 0), (1, 0), (c1, c2)), c1 must be in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard basic triangle Tb or the
circumcenter of Tb which may be entered as "CC" as well; default is M =
(1, 1, 1), i.e., the center of mass of Tb.

rv Index of the M-vertex region containing the point p, either 1,2,3 or NULL (default
is NULL).

Value

Vertices of the triangular region which constitutes the PE proximity region with expansion parame-
ter r and center M for a point p

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

NPEint 303

See Also

NPEtri, NAStri, NCStri, and IarcPEbasic.tri

Examples

Not run:
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)

r<-2

P1<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also P1<-c(.4,.2)
NPEbasic.tri(P1,r,c1,c2,M)

#or try
Rv<-rel.vert.basic.tri(P1,c1,c2,M)$rv
NPEbasic.tri(P1,r,c1,c2,M,Rv)

P1<-c(1.4,1.2)
P2<-c(1.5,1.26)
NPEbasic.tri(P1,r,c1,c2,M) #gives an error if M=c(1.3,1.3)
#since center is not the circumcenter or not in the interior of the triangle

End(Not run)

NPEint The end points of the Proportional Edge (PE) Proximity Region for a
point - one interval case

Description

Returns the end points of the interval which constitutes the PE proximity region for a point in the
interval int= (a, b) =(rv=1,rv=2). PE proximity region is constructed with respect to the interval
int with expansion parameter r ≥ 1 and centrality parameter c ∈ (0, 1).

Vertex regions are based on the (parameterized) center, Mc, which is Mc = a + c(b − a) for the
interval, int= (a, b). The PE proximity region is constructed whether x is inside or outside the
interval int.

See also (Ceyhan (2012)).

Usage

NPEint(x, int, r, c = 0.5)

304 NPEstd.tetra

Arguments

x A 1D point for which PE proximity region is constructed.

int A vector of two real numbers representing an interval.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

The interval which constitutes the PE proximity region for the point x

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

NCSint, NPEtri and NPEtetra

Examples

c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

NPEint(7,int,r,c)
NPEint(17,int,r,c)
NPEint(1,int,r,c)
NPEint(-1,int,r,c)

NPEstd.tetra The vertices of the Proportional Edge (PE) Proximity Region in the
standard regular tetrahedron

NPEstd.tetra 305

Description

Returns the vertices of the PE proximity region (which is itself a tetrahedron) for a point in the
standard regular tetrahedron Th = T ((0, 0, 0), (1, 0, 0), (1/2,

√
3/2, 0), (1/2,

√
3/6,

√
6/3)) =

(rv=1,rv=2,rv=3,rv=4).

PE proximity region is defined with respect to the tetrahedron Th with expansion parameter r ≥ 1
and vertex regions based on the circumcenter of Th (which is equivalent to the center of mass in the
standard regular tetrahedron).

Vertex regions are labeled as 1,2,3,4 rowwise for the vertices of the tetrahedron Th. rv is the
index of the vertex region p resides, with default=NULL. If p is outside of Th, it returns NULL for the
proximity region.

See also (Ceyhan (2005, 2010)).

Usage

NPEstd.tetra(p, r, rv = NULL)

Arguments

p A 3D point whose PE proximity region is to be computed.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

rv Index of the vertex region containing the point, either 1,2,3,4 or NULL (default
is NULL).

Value

Vertices of the tetrahedron which constitutes the PE proximity region with expansion parameter r
and circumcenter (or center of mass) for a point p in the standard regular tetrahedron

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

NPEtetra, NPEtri and NPEint

306 NPEtetra

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

n<-3
Xp<-runif.std.tetra(n)$g
r<-1.5
NPEstd.tetra(Xp[1,],r)

#or try
RV<-rel.vert.tetraCC(Xp[1,],tetra)$rv
NPEstd.tetra(Xp[1,],r,rv=RV)

NPEstd.tetra(c(-1,-1,-1),r,rv=NULL)

End(Not run)

NPEtetra The vertices of the Proportional Edge (PE) Proximity Region in a
tetrahedron

Description

Returns the vertices of the PE proximity region (which is itself a tetrahedron) for a point in the
tetrahedron th.

PE proximity region is defined with respect to the tetrahedron th with expansion parameter r ≥ 1
and vertex regions based on the center M which is circumcenter ("CC") or center of mass ("CM") of
th with default="CM".

Vertex regions are labeled as 1,2,3,4 rowwise for the vertices of the tetrahedron th. rv is the
index of the vertex region p resides, with default=NULL. If p is outside of th, it returns NULL for the
proximity region.

See also (Ceyhan (2005, 2010)).

Usage

NPEtetra(p, th, r, M = "CM", rv = NULL)

Arguments

p A 3D point whose PE proximity region is to be computed.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

NPEtetra 307

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

rv Index of the vertex region containing the point, either 1,2,3,4 (default is NULL).

Value

Vertices of the tetrahedron which constitutes the PE proximity region with expansion parameter r
and circumcenter (or center of mass) for a point p in the tetrahedron

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

NPEstd.tetra, NPEtri and NPEint

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
set.seed(1)
tetra<-rbind(A,B,C,D)+matrix(runif(12,-.25,.25),ncol=3)
n<-3 #try also n<-20

Xp<-runif.tetra(n,tetra)$g

M<-"CM" #try also M<-"CC"
r<-1.5

NPEtetra(Xp[1,],tetra,r) #uses the default M="CM"
NPEtetra(Xp[1,],tetra,r,M="CC")

#or try
RV<-rel.vert.tetraCM(Xp[1,],tetra)$rv
NPEtetra(Xp[1,],tetra,r,M,rv=RV)

P1<-c(.1,.1,.1)
NPEtetra(P1,tetra,r,M)

End(Not run)

308 NPEtri

NPEtri The vertices of the Proportional Edge (PE) Proximity Region in a gen-
eral triangle

Description

Returns the vertices of the PE proximity region (which is itself a triangle) for a point in the triangle
tri= T (A,B,C) =(rv=1,rv=2,rv=3).

PE proximity region is defined with respect to the triangle tri with expansion parameter r ≥ 1
and vertex regions based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ)
in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri;
default is M = (1, 1, 1), i.e., the center of mass of tri.

Vertex regions are labeled as 1, 2, 3 rowwise for the vertices of the triangle tri. rv is the index
of the vertex region p resides, with default=NULL. If p is outside of tri, it returns NULL for the
proximity region.

See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)).

Usage

NPEtri(p, tri, r, M = c(1, 1, 1), rv = NULL)

Arguments

p A 2D point whose PE proximity region is to be computed.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; default is M = (1, 1, 1), i.e., the
center of mass of tri.

rv Index of the M-vertex region containing the point p, either 1,2,3 or NULL (default
is NULL).

Value

Vertices of the triangular region which constitutes the PE proximity region with expansion parame-
ter r and center M for a point p

Author(s)

Elvan Ceyhan

NPEtri 309

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

NPEbasic.tri, NAStri, NCStri, and IarcPEtri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

r<-1.5

n<-3
set.seed(1)
Xp<-runif.tri(n,Tr)$g

NPEtri(Xp[3,],Tr,r,M)

P1<-as.numeric(runif.tri(1,Tr)$g) #try also P1<-c(.4,.2)
NPEtri(P1,Tr,r,M)

M<-c(1.3,1.3)
r<-2

P1<-c(1.4,1.2)
P2<-c(1.5,1.26)
NPEtri(P1,Tr,r,M)
NPEtri(P2,Tr,r,M)

#or try
Rv<-rel.vert.tri(P1,Tr,M)$rv
NPEtri(P1,Tr,r,M,Rv)

End(Not run)

310 num.arcsAS

num.arcsAS Number of arcs of Arc Slice Proximity Catch Digraphs (AS-PCDs)
and related quantities of the induced subdigraphs for points in the
Delaunay triangles - multiple triangle case

Description

An object of class "NumArcs". Returns the number of arcs and various other quantities related to
the Delaunay triangles for Arc Slice Proximity Catch Digraph (AS-PCD) whose vertices are the
data points in Xp in the multiple triangle case.

AS proximity regions are defined with respect to the Delaunay triangles based on Yp points and
vertex regions in each triangle are based on the center M="CC" for circumcenter of each Delaunay
triangle or M = (α, β, γ) in barycentric coordinates in the interior of each Delaunay triangle;
default is M="CC" i.e., circumcenter of each triangle.

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points).

See (Ceyhan (2005, 2010)) for more on AS-PCDs. Also see (Okabe et al. (2000); Ceyhan (2010);
Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

Usage

num.arcsAS(Xp, Yp, M = "CC")

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

M The center of the triangle. "CC" stands for circumcenter of each Delaunay tri-
angle or 3D point in barycentric coordinates which serves as a center in the
interior of each Delaunay triangle; default is M="CC" i.e., the circumcenter of
each triangle.

Value

A list with the elements

desc A short description of the output: number of arcs and related quantities for the
induced subdigraphs in the Delaunay triangles

num.arcs Total number of arcs in all triangles, i.e., the number of arcs for the entire AS-
PCD

num.in.conhull Number of Xp points in the convex hull of Yp points

num.in.tris The vector of number of Xp points in the Delaunay triangles based on Yp points

weight.vec The vector of the areas of Delaunay triangles based on Yp points

tri.num.arcs The vector of the number of arcs of the component of the AS-PCD in the
Delaunay triangles based on Yp points

num.arcsAS 311

del.tri.ind A matrix of indices of Delaunay triangles based on Yp points, each column cor-
responds to the vector of indices of the vertices of one of the Delaunay triangle.

data.tri.ind A vector of indices of vertices of the Delaunay triangles in which data points
reside, i.e., column number of del.tri.ind for each Xp point.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the Delaunay triangulation based on Yp points.

vertices Vertices of the digraph, Xp.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

num.arcsAStri, num.arcsPE, and num.arcsCS

Examples

Not run:
nx<-15; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-"CC" #try also M<-c(1,1,1)
Narcs = num.arcsAS(Xp,Yp,M)
Narcs
summary(Narcs)
plot(Narcs)

312 num.arcsAStri

End(Not run)

num.arcsAStri Number of arcs of Arc Slice Proximity Catch Digraphs (AS-PCDs) and
quantities related to the triangle - one triangle case

Description

An object of class "NumArcs". Returns the number of arcs of Arc Slice Proximity Catch Digraphs
(AS-PCDs) whose vertices are the 2D data set, Xp. It also provides number of vertices (i.e., number
of data points inside the triangle) and indices of the data points that reside in the triangle.
The data points could be inside or outside a general triangle tri= T (A,B,C) =(rv=1,rv=2,rv=3),
with vertices of tri stacked row-wise.
AS proximity regions are defined with respect to the triangle tri and vertex regions are based
on the center M="CC" for circumcenter of tri; or M = (m1,m2) in Cartesian coordinates or
M = (α, β, γ) in barycentric coordinates in the interior of the triangle tri; default is M="CC" i.e.,
circumcenter of tri. For the number of arcs, loops are not allowed, so arcs are only possible for
points inside the triangle, tri.
See also (Ceyhan (2005, 2010)).

Usage

num.arcsAStri(Xp, tri, M = "CC")

Arguments

Xp A set of 2D points which constitute the vertices of the digraph (i.e., AS-PCD).
tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-

gle.
M The center of the triangle. "CC" stands for circumcenter of the triangle tri or a

2D point in Cartesian coordinates or a 3D point in barycentric coordinates which
serves as a center in the interior of tri; default is M="CC" i.e., the circumcenter
of tri.

Value

A list with the elements

desc A short description of the output: number of arcs and quantities related to the
triangle

num.arcs Number of arcs of the AS-PCD
num.in.tri Number of Xp points in the triangle, tri
ind.in.tri The vector of indices of the Xp points that reside in the triangle
tess.points Points on which the tessellation of the study region is performed, here, tessella-

tion is the support triangle.
vertices Vertices of the digraph, Xp.

num.arcsCS 313

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

num.arcsAS, num.arcsPEtri, and num.arcsCStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

n<-10 #try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

Narcs = num.arcsAStri(Xp,Tr,M)
Narcs
summary(Narcs)
plot(Narcs)

End(Not run)

num.arcsCS Number of arcs of Central Similarity Proximity Catch Digraphs (CS-
PCDs) and related quantities of the induced subdigraphs for points in
the Delaunay triangles - multiple triangle case

314 num.arcsCS

Description

An object of class "NumArcs". Returns the number of arcs and various other quantities related to
the Delaunay triangles for Central Similarity Proximity Catch Digraph (CS-PCD) whose vertices
are the data points in Xp in the multiple triangle case.

CS proximity regions are defined with respect to the Delaunay triangles based on Yp points with
expansion parameter t > 0 and edge regions in each triangle is based on the center M = (α, β, γ)
in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of
each Delaunay triangle (default for M = (1, 1, 1) which is the center of mass of the triangle). Each
Delaunay triangle is first converted to an (nonscaled) basic triangle so that M will be the same type
of center for each Delaunay triangle (this conversion is not necessary when M is CM).

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For
the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull
of Yp points.

See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) for more on CS-PCDs. Also see (Ok-
abe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the
corresponding algorithm.

Usage

num.arcsCS(Xp, Yp, t, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of the CS-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 3D point in barycentric coordinates which serves as a center in the interior of
each Delaunay triangle, default for M = (1, 1, 1) which is the center of mass of
each triangle.

Value

A list with the elements

desc A short description of the output: number of arcs and related quantities for the
induced subdigraphs in the Delaunay triangles

num.arcs Total number of arcs in all triangles, i.e., the number of arcs for the entire PE-
PCD

num.in.conhull Number of Xp points in the convex hull of Yp points

num.in.tris The vector of number of Xp points in the Delaunay triangles based on Yp points

weight.vec The vector of the areas of Delaunay triangles based on Yp points

tri.num.arcs The vector of the number of arcs of the component of the PE-PCD in the De-
launay triangles based on Yp points

num.arcsCS 315

del.tri.ind A matrix of indices of vertices of the Delaunay triangles based on Yp points,
each column corresponds to the vector of indices of the vertices of one triangle.

data.tri.ind A vector of indices of vertices of the Delaunay triangles in which data points
reside, i.e., column number of del.tri.ind for each Xp point.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the Delaunay triangulation based on Yp points.

vertices Vertices of the digraph, Xp.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

num.arcsCStri, num.arcsCSstd.tri, num.arcsPE, and num.arcsAS

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)

316 num.arcsCS1D

Narcs = num.arcsCS(Xp,Yp,t=1,M)
Narcs
summary(Narcs)
plot(Narcs)

End(Not run)

num.arcsCS1D Number of arcs of Central Similarity Proximity Catch Digraphs (CS-
PCDs) and related quantities of the induced subdigraphs for points in
the partition intervals - multiple interval case

Description

An object of class "NumArcs". Returns the number of arcs and various other quantities related to
the partition intervals for Central Similarity Proximity Catch Digraph (CS-PCD) whose vertices are
the data points in Xp in the multiple interval case.

For this function, CS proximity regions are constructed data points inside or outside the intervals
based on Yp points with expansion parameter t ≥ 0 and centrality parameter c ∈ (0, 1). That is, for
this function, arcs may exist for points in the middle or end intervals.

Range (or convex hull) of Yp (i.e., the interval (min(Y p),max(Y p))) is partitioned by the spacings
based on Yp points (i.e., multiple intervals are these partition intervals based on the order statistics
of Yp points whose union constitutes the range of Yp points). For the number of arcs, loops are not
counted.

Usage

num.arcsCS1D(Xp, Yp, t, c = 0.5)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the CS-PCD.

Yp A set or vector of 1D points which constitute the end points of the partition
intervals.

t A positive real number which serves as the expansion parameter in CS proximity
region; must be > 0.

c A positive real number in (0, 1) parameterizing the center inside the middle
(partition) intervals with the default c=.5. For an interval, int= (a, b), the
parameterized center is Mc = a+ c(b− a).

Value

A list with the elements

desc A short description of the output: number of arcs and related quantities for the
induced subdigraphs in the partition intervals

num.arcsCS1D 317

num.arcs Total number of arcs in all intervals (including the end intervals), i.e., the number
of arcs for the entire CS-PCD

num.in.range Number of Xp points in the range or convex hull of Yp points
num.in.ints The vector of number of Xp points in the partition intervals (including the end

intervals) based on Yp points
weight.vec The vector of the lengths of the middle partition intervals (i.e., end intervals

excluded) based on Yp points
int.num.arcs The vector of the number of arcs of the component of the CS-PCD in the par-

tition intervals (including the end intervals) based on Yp points
part.int A list of partition intervals based on Yp points
data.int.ind A vector of indices of partition intervals in which data points reside, i.e., col-

umn number of part.int is provided for each Xp point. Partition intervals are
numbered from left to right with 1 being the left end interval.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the partition intervals based on Yp points.

vertices Vertices of the digraph, Xp.

Author(s)

Elvan Ceyhan

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

num.arcsCSint, num.arcsCSmid.int, num.arcsCSend.int, and num.arcsPE1D

Examples

tau<-1.5
c<-.4
a<-0; b<-10; int<-c(a,b);

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xf<-(int[2]-int[1])*.1

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

Narcs = num.arcsCS1D(Xp,Yp,tau,c)
Narcs
summary(Narcs)
plot(Narcs)

318 num.arcsCSend.int

num.arcsCSend.int Number of arcs of Central Similarity Proximity Catch Digraphs (CS-
PCDs) - end interval case

Description

Returns the number of arcs of Central Similarity Proximity Catch Digraphs (CS-PCDs) whose
vertices are a 1D numerical data set, Xp, outside the interval int= (a, b).

CS proximity region is constructed only with expansion parameter t > 0 for points outside the
interval (a, b).

End vertex regions are based on the end points of the interval, i.e., the corresponding end vertex
region is an interval as (−∞, a) or (b,∞) for the interval (a, b). For the number of arcs, loops are
not allowed, so arcs are only possible for points outside the interval, int, for this function.

See also (Ceyhan (2016)).

Usage

num.arcsCSend.int(Xp, int, t)

Arguments

Xp A vector of 1D points which constitute the vertices of the digraph.

int A vector of two real numbers representing an interval.

t A positive real number which serves as the expansion parameter in CS proximity
region.

Value

Number of arcs for the CS-PCD with vertices being 1D data set, Xp, expansion parameter, t, for the
end intervals.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

num.arcsCSmid.int, num.arcsPEmid.int, and num.arcsPEend.int

num.arcsCSint 319

Examples

a<-0; b<-10; int<-c(a,b)

n<-5
XpL<-runif(n,a-5,a)
XpR<-runif(n,b,b+5)
Xp<-c(XpL,XpR)

num.arcsCSend.int(Xp,int,t=2)

num.arcsCSend.int(Xp,int,t=1.2)

num.arcsCSend.int(Xp,int,t=4)

num.arcsCSend.int(Xp,int,t=2+5)
#num.arcsCSend.int(Xp,int,t=c(-5,15))

n<-10 #try also n<-20
Xp2<-runif(n,a-5,b+5)
num.arcsCSend.int(Xp2,int,t=2)

t<-.5
num.arcsCSend.int(Xp,int,t)

num.arcsCSint Number of arcs of Central Similarity Proximity Catch Digraphs (CS-
PCDs) and quantities related to the interval - one interval case

Description

An object of class "NumArcs". Returns the number of arcs of Central Similarity Proximity Catch
Digraphs (CS-PCDs) whose vertices are the data points in Xp in the one middle interval case. It also
provides number of vertices (i.e., number of data points inside the intervals) and indices of the data
points that reside in the intervals.

The data points could be inside or outside the interval is int= (a, b).

CS proximity region is constructed with an expansion parameter t > 0 and a centrality parameter
c ∈ (0, 1). CS proximity region is constructed for both points inside and outside the interval, hence
the arcs may exist for all points inside or outside the interval.

See also (Ceyhan (2016)).

Usage

num.arcsCSint(Xp, int, t, c = 0.5)

320 num.arcsCSint

Arguments

Xp A set of 1D points which constitute the vertices of CS-PCD.

int A vector of two real numbers representing an interval.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

A list with the elements

desc A short description of the output: number of arcs and quantities related to the
interval

num.arcs Total number of arcs in all intervals (including the end intervals), i.e., the number
of arcs for the entire CS-PCD

num.in.range Number of Xp points in the interval int

num.in.ints The vector of number of Xp points in the partition intervals (including the end
intervals)

int.num.arcs The vector of the number of arcs of the component of the CS-PCD in the par-
tition intervals (including the end intervals)

data.int.ind A vector of indices of partition intervals in which data points reside. Partition
intervals are numbered from left to right with 1 being the left end interval.

ind.left.end, ind.mid, ind.right.end
Indices of data points in the left end interval, middle interval, and right end
interval (respectively)

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the support interval.

vertices Vertices of the digraph, Xp.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

num.arcsCSmid.int, num.arcsCSend.int, and num.arcsPEint

num.arcsCSmid.int 321

Examples

c<-.4
t<-2
a<-0; b<-10; int<-c(a,b)

n<-10
set.seed(1)
Xp<-runif(n,a,b)
Narcs = num.arcsCSint(Xp,int,t,c)
Narcs
summary(Narcs)
plot(Narcs)

num.arcsCSmid.int Number of Arcs of of Central Similarity Proximity Catch Digraphs
(CS-PCDs) - middle interval case

Description

Returns the number of arcs of of Central Similarity Proximity Catch Digraphs (CS-PCDs) whose
vertices are the given 1D numerical data set, Xp.

CS proximity region NCS(x, t, c) is defined with respect to the interval int= (a, b) for this func-
tion. CS proximity region is constructed with expansion parameter t > 0 and centrality parameter
c ∈ (0, 1).

Vertex regions are based on the center associated with the centrality parameter c ∈ (0, 1). For the
interval, int= (a, b), the parameterized center is Mc = a + c(b − a) and for the number of arcs,
loops are not allowed so arcs are only possible for points inside the middle interval int for this
function.

See also (Ceyhan (2016)).

Usage

num.arcsCSmid.int(Xp, int, t, c = 0.5)

Arguments

Xp A set or vector of 1D points which constitute the vertices of CS-PCD.

int A vector of two real numbers representing an interval.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

322 num.arcsCSmid.int

Value

Number of arcs for the PE-PCD whose vertices are the 1D data set, Xp, with expansion parameter,
r ≥ 1, and centrality parameter, c ∈ (0, 1). PE proximity regions are defined only for Xp points
inside the interval int, i.e., arcs are possible for such points only.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

num.arcsCSend.int, num.arcsPEmid.int, and num.arcsPEend.int

Examples

c<-.4
t<-2
a<-0; b<-10; int<-c(a,b)

n<-10
Xp<-runif(n,a,b)
num.arcsCSmid.int(Xp,int,t,c)

num.arcsCSmid.int(Xp,int,t,c=.3)

num.arcsCSmid.int(Xp,int,t=1.5,c)

#num.arcsCSmid.int(Xp,int,t,c+5) #gives error
#num.arcsCSmid.int(Xp,int,t,c+10)

n<-10 #try also n<-20
Xp<-runif(n,a-5,b+5)
num.arcsCSint(Xp,int,t,c)

Xp<-runif(n,a+10,b+10)
num.arcsCSmid.int(Xp,int,t,c)

n<-10
Xp<-runif(n,a,b)
num.arcsCSmid.int(Xp,int,t,c)

num.arcsCSstd.tri 323

num.arcsCSstd.tri Number of arcs of Central Similarity Proximity Catch Digraphs (CS-
PCDs) and quantities related to the triangle - standard equilateral
triangle case

Description

An object of class "NumArcs". Returns the number of arcs of Central Similarity Proximity Catch
Digraphs (CS-PCDs) whose vertices are the given 2D numerical data set, Xp. It also provides num-
ber of vertices (i.e., number of data points inside the standard equilateral triangle Te) and indices of
the data points that reside in Te.

CS proximity region NCS(x, t) is defined with respect to the standard equilateral triangle Te =
T (v = 1, v = 2, v = 3) = T ((0, 0), (1, 0), (1/2,

√
3/2)) with expansion parameter t > 0 and

edge regions are based on the center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in
barycentric coordinates in the interior of Te; default is M = (1, 1, 1) i.e., the center of mass of Te.
For the number of arcs, loops are not allowed so arcs are only possible for points inside Te for this
function.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

num.arcsCSstd.tri(Xp, t, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of the digraph.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates.
which serves as a center in the interior of the standard equilateral triangle Te;
default is M = (1, 1, 1) i.e. the center of mass of Te.

Value

A list with the elements

desc A short description of the output: number of arcs and quantities related to the
standard equilateral triangle

num.arcs Number of arcs of the CS-PCD

num.in.tri Number of Xp points in the standard equilateral triangle, Te

ind.in.tri The vector of indices of the Xp points that reside in Te

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the support triangle Te.

vertices Vertices of the digraph, Xp.

324 num.arcsCStri

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

num.arcsCStri, num.arcsCS, and num.arcsPEstd.tri,

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

Narcs = num.arcsCSstd.tri(Xp,t=.5,M)
Narcs
summary(Narcs)
par(pty="s")
plot(Narcs,asp=1)

End(Not run)

num.arcsCStri Number of arcs of Central Similarity Proximity Catch Digraphs (CS-
PCDs) and quantities related to the triangle - one triangle case

Description

An object of class "NumArcs". Returns the number of arcs of Central Similarity Proximity Catch
Digraphs (CS-PCDs) whose vertices are the given 2D numerical data set, Xp. It also provides

num.arcsCStri 325

number of vertices (i.e., number of data points inside the triangle) and indices of the data points that
reside in the triangle.

CS proximity region NCS(x, t) is defined with respect to the triangle, tri with expansion parameter
t > 0 and edge regions are based on the center M = (m1,m2) in Cartesian coordinates or M =
(α, β, γ) in barycentric coordinates in the interior of tri; default is M = (1, 1, 1) i.e., the center
of mass of tri. For the number of arcs, loops are not allowed so arcs are only possible for points
inside tri for this function.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

num.arcsCStri(Xp, tri, t, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of CS-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri; default is M =
(1, 1, 1) i.e. the center of mass of tri.

Value

A list with the elements

desc A short description of the output: number of arcs and quantities related to the
triangle

num.arcs Number of arcs of the CS-PCD

num.in.tri Number of Xp points in the triangle, tri

ind.in.tri The vector of indices of the Xp points that reside in the triangle

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the support triangle.

vertices Vertices of the digraph, Xp.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

326 num.arcsPE

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

num.arcsCSstd.tri, num.arcsCS, num.arcsPEtri, and num.arcsAStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

n<-10 #try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

Narcs = num.arcsCStri(Xp,Tr,t=.5,M)
Narcs
summary(Narcs)
plot(Narcs)

End(Not run)

num.arcsPE Number of arcs of Proportional Edge Proximity Catch Digraphs (PE-
PCDs) and related quantities of the induced subdigraphs for points in
the Delaunay triangles - multiple triangle case

Description

An object of class "NumArcs". Returns the number of arcs and various other quantities related to
the Delaunay triangles for Proportional Edge Proximity Catch Digraph (PE-PCD) whose vertices
are the data points in Xp in the multiple triangle case.

PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with
expansion parameter r ≥ 1 and vertex regions in each triangle is based on the center M = (α, β, γ)
in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of
each Delaunay triangle (default for M = (1, 1, 1) which is the center of mass of the triangle). Each
Delaunay triangle is first converted to an (nonscaled) basic triangle so that M will be the same type
of center for each Delaunay triangle (this conversion is not necessary when M is CM).

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). For

num.arcsPE 327

the number of arcs, loops are not allowed so arcs are only possible for points inside the convex hull
of Yp points.

See (Ceyhan (2005); Ceyhan et al. (2006)) for more on PE-PCDs. Also, see (Okabe et al. (2000);
Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algo-
rithm.

Usage

num.arcsPE(Xp, Yp, r, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 3D point in barycentric coordinates which serves as a center in the interior
of each Delaunay triangle or circumcenter of each Delaunay triangle (for this,
argument should be set as M="CC"), default for M = (1, 1, 1) which is the center
of mass of each triangle.

Value

A list with the elements

desc A short description of the output: number of arcs and related quantities for the
induced subdigraphs in the Delaunay triangles

num.arcs Total number of arcs in all triangles, i.e., the number of arcs for the entire PE-
PCD

num.in.conhull Number of Xp points in the convex hull of Yp points

num.in.tris The vector of number of Xp points in the Delaunay triangles based on Yp points

weight.vec The vector of the areas of Delaunay triangles based on Yp points

tri.num.arcs The vector of the number of arcs of the component of the PE-PCD in the De-
launay triangles based on Yp points

del.tri.ind A matrix of indices of vertices of the Delaunay triangles based on Yp points,
each column corresponds to the vector of indices of the vertices of one triangle.

data.tri.ind A vector of indices of vertices of the Delaunay triangles in which data points
reside, i.e., column number of del.tri.ind for each Xp point.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the Delaunay triangulation based on Yp points.

vertices Vertices of the digraph, Xp.

Author(s)

Elvan Ceyhan

328 num.arcsPE1D

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

num.arcsPEtri, num.arcsPEstd.tri, num.arcsCS, and num.arcsAS

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)

Narcs = num.arcsPE(Xp,Yp,r=1.25,M)
Narcs
summary(Narcs)
plot(Narcs)

End(Not run)

num.arcsPE1D Number of arcs of Proportional Edge Proximity Catch Digraphs (PE-
PCDs) and related quantities of the induced subdigraphs for points in
the partition intervals - multiple interval case

num.arcsPE1D 329

Description

An object of class "NumArcs". Returns the number of arcs and various other quantities related to
the partition intervals for Proportional Edge Proximity Catch Digraph (PE-PCD) whose vertices are
the data points in Xp in the multiple interval case.

For this function, PE proximity regions are constructed data points inside or outside the intervals
based on Yp points with expansion parameter r ≥ 1 and centrality parameter c ∈ (0, 1). That is, for
this function, arcs may exist for points in the middle or end intervals.

Range (or convex hull) of Yp (i.e., the interval (min(Y p),max(Y p))) is partitioned by the spacings
based on Yp points (i.e., multiple intervals are these partition intervals based on the order statistics
of Yp points whose union constitutes the range of Yp points). For the number of arcs, loops are not
counted.

See also (Ceyhan (2012)).

Usage

num.arcsPE1D(Xp, Yp, r, c = 0.5)

Arguments

Xp A set or vector of 1D points which constitute the vertices of the PE-PCD.

Yp A set or vector of 1D points which constitute the end points of the partition
intervals.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside the middle (par-
tition) intervals with the default c=.5. For an interval, (a, b), the parameterized
center is Mc = a+ c(b− a).

Value

A list with the elements

desc A short description of the output: number of arcs and related quantities for the
induced subdigraphs in the partition intervals

num.arcs Total number of arcs in all intervals (including the end intervals), i.e., the number
of arcs for the entire PE-PCD

num.in.range Number of Xp points in the range or convex hull of Yp points

num.in.ints The vector of number of Xp points in the partition intervals (including the end
intervals) based on Yp points

weight.vec The vector of the lengths of the middle partition intervals (i.e., end intervals
excluded) based on Yp points

int.num.arcs The vector of the number of arcs of the components of the PE-PCD in the
partition intervals (including the end intervals) based on Yp points

part.int A matrix with columns corresponding to the partition intervals based on Yp
points.

330 num.arcsPE1D

data.int.ind A vector of indices of partition intervals in which data points reside, i.e., col-
umn number of part.int is provided for each Xp point. Partition intervals are
numbered from left to right with 1 being the left end interval.

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the partition intervals based on Yp points.

vertices Vertices of the digraph, Xp.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

num.arcsPEint, num.arcsPEmid.int, num.arcsPEend.int, and num.arcsCS1D

Examples

Not run:
r<-2
c<-.4
a<-0; b<-10; int<-c(a,b);

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xf<-(int[2]-int[1])*.1

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

Narcs = num.arcsPE1D(Xp,Yp,r,c)
Narcs
summary(Narcs)
plot(Narcs)

End(Not run)

num.arcsPEend.int 331

num.arcsPEend.int Number of arcs of Proportional Edge Proximity Catch Digraphs (PE-
PCDs) - end interval case

Description

Returns the number of arcs of Proportional Edge Proximity Catch Digraphs (PE-PCDs) whose
vertices are a 1D numerical data set, Xp, outside the interval int= (a, b).

PE proximity region is constructed only with expansion parameter r ≥ 1 for points outside the
interval (a, b). End vertex regions are based on the end points of the interval, i.e., the corresponding
vertex region is an interval as (−∞, a) or (b,∞) for the interval (a, b). For the number of arcs, loops
are not allowed, so arcs are only possible for points outside the interval, int, for this function.

See also (Ceyhan (2012)).

Usage

num.arcsPEend.int(Xp, int, r)

Arguments

Xp A vector of 1D points which constitute the vertices of the digraph.

int A vector of two real numbers representing an interval.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

Value

Number of arcs for the PE-PCD with vertices being 1D data set, Xp, expansion parameter, r ≥ 1,
for the end intervals.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

num.arcsPEmid.int, num.arcsPE1D, num.arcsCSmid.int, and num.arcsCSend.int

332 num.arcsPEint

Examples

Not run:
a<-0; b<-10; int<-c(a,b)

n<-5
XpL<-runif(n,a-5,a)
XpR<-runif(n,b,b+5)
Xp<-c(XpL,XpR)

r<-1.2
num.arcsPEend.int(Xp,int,r)
num.arcsPEend.int(Xp,int,r=2)

End(Not run)

num.arcsPEint Number of arcs of Proportional Edge Proximity Catch Digraphs (PE-
PCDs) and quantities related to the interval - one interval case

Description

An object of class "NumArcs". Returns the number of arcs of Proportional Edge Proximity Catch
Digraph (PE-PCD) whose vertices are the data points in Xp in the one middle interval case. It also
provides number of vertices (i.e., number of data points inside the intervals) and indices of the data
points that reside in the intervals.

The data points could be inside or outside the interval is int= (a, b). PE proximity region is con-
structed with an expansion parameter r ≥ 1 and a centrality parameter c ∈ (0, 1). int determines
the end points of the interval.

The PE proximity region is constructed for both points inside and outside the interval, hence the
arcs may exist for all points inside or outside the interval.

See also (Ceyhan (2012)).

Usage

num.arcsPEint(Xp, int, r, c = 0.5)

Arguments

Xp A set of 1D points which constitute the vertices of PE-PCD.

int A vector of two real numbers representing an interval.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

num.arcsPEint 333

Value

A list with the elements

desc A short description of the output: number of arcs and quantities related to the
interval

num.arcs Total number of arcs in all intervals (including the end intervals), i.e., the number
of arcs for the entire PE-PCD

num.in.range Number of Xp points in the interval int

num.in.ints The vector of number of Xp points in the partition intervals (including the end
intervals)

int.num.arcs The vector of the number of arcs of the components of the PE-PCD in the
partition intervals (including the end intervals)

data.int.ind A vector of indices of partition intervals in which data points reside. Partition
intervals are numbered from left to right with 1 being the left end interval.

ind.left.end, ind.mid, ind.right.end
Indices of data points in the left end interval, middle interval, and right end
interval (respectively)

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the support interval.

vertices Vertices of the digraph, Xp.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

num.arcsPEmid.int, num.arcsPEend.int, and num.arcsCSint

Examples

Not run:
c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

xf<-(int[2]-int[1])*.1

set.seed(123)

n<-10
Xp<-runif(n,a-xf,b+xf)
Narcs = num.arcsPEint(Xp,int,r,c)

334 num.arcsPEmid.int

Narcs
summary(Narcs)
plot(Narcs)

End(Not run)

num.arcsPEmid.int Number of Arcs for Proportional Edge Proximity Catch Digraphs (PE-
PCDs) - middle interval case

Description

Returns the number of arcs of Proportional Edge Proximity Catch Digraphs (PE-PCDs) whose
vertices are the given 1D numerical data set, Xp. PE proximity region NPE(x, r, c) is defined with
respect to the interval int= (a, b) for this function.

PE proximity region is constructed with expansion parameter r ≥ 1 and centrality parameter c ∈
(0, 1).

Vertex regions are based on the center associated with the centrality parameter c ∈ (0, 1). For the
interval, int= (a, b), the parameterized center is Mc = a + c(b − a) and for the number of arcs,
loops are not allowed so arcs are only possible for points inside the middle interval int for this
function.

See also (Ceyhan (2012)).

Usage

num.arcsPEmid.int(Xp, int, r, c = 0.5)

Arguments

Xp A set or vector of 1D points which constitute the vertices of PE-PCD.

int A vector of two real numbers representing an interval.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

Number of arcs for the PE-PCD whose vertices are the 1D data set, Xp, with expansion parameter,
r ≥ 1, and centrality parameter, c ∈ (0, 1). PE proximity regions are defined only for Xp points
inside the interval int, i.e., arcs are possible for such points only.

Author(s)

Elvan Ceyhan

num.arcsPEstd.tri 335

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

num.arcsPEend.int, num.arcsPE1D, num.arcsCSmid.int, and num.arcsCSend.int

Examples

Not run:
c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

n<-10
Xp<-runif(n,a,b)
num.arcsPEmid.int(Xp,int,r,c)
num.arcsPEmid.int(Xp,int,r=1.5,c)

End(Not run)

num.arcsPEstd.tri Number of arcs of Proportional Edge Proximity Catch Digraphs (PE-
PCDs) and quantities related to the triangle - standard equilateral
triangle case

Description

An object of class "NumArcs". Returns the number of arcs of Proportional Edge Proximity Catch
Digraphs (PE-PCDs) whose vertices are the given 2D numerical data set, Xp in the standard equi-
lateral triangle. It also provides number of vertices (i.e., number of data points inside the standard
equilateral triangle Te) and indices of the data points that reside in Te.

PE proximity region NPE(x, r) is defined with respect to the standard equilateral triangle Te =
T (v = 1, v = 2, v = 3) = T ((0, 0), (1, 0), (1/2,

√
3/2)) with expansion parameter r ≥ 1 and

vertex regions are based on the center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ)
in barycentric coordinates in the interior of Te; default is M = (1, 1, 1), i.e., the center of mass of
Te. For the number of arcs, loops are not allowed so arcs are only possible for points inside Te for
this function.

See also (Ceyhan et al. (2006)).

Usage

num.arcsPEstd.tri(Xp, r, M = c(1, 1, 1))

336 num.arcsPEstd.tri

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

r A positive real number which serves as the expansion parameter for PE proxim-
ity region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle Te;
default is M = (1, 1, 1) i.e. the center of mass of Te.

Value

A list with the elements

desc A short description of the output: number of arcs and quantities related to the
standard equilateral triangle

num.arcs Number of arcs of the PE-PCD

num.in.tri Number of Xp points in the standard equilateral triangle, Te

ind.in.tri The vector of indices of the Xp points that reside in Te

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the support triangle Te.

vertices Vertices of the digraph, Xp.

Author(s)

Elvan Ceyhan

References

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

num.arcsPEtri, num.arcsPE, and num.arcsCSstd.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-c(.6,.2) #try also M<-c(1,1,1)

Narcs = num.arcsPEstd.tri(Xp,r=1.25,M)
Narcs

num.arcsPEtetra 337

summary(Narcs)
par(pty="s")
plot(Narcs,asp=1)

End(Not run)

num.arcsPEtetra Number of arcs of Proportional Edge Proximity Catch Digraphs (PE-
PCDs) and quantities related to the tetrahedron - one tetrahedron case

Description

An object of class "NumArcs". Returns the number of arcs of Proportional Edge Proximity Catch
Digraphs (PE-PCDs) whose vertices are the given 3D numerical data set, Xp. It also provides
number of vertices (i.e., number of data points inside the tetrahedron) and indices of the data points
that reside in the tetrahedron.

PE proximity region is constructed with respect to the tetrahedron th and vertex regions are based
on the center M which is circumcenter ("CC") or center of mass ("CM") of th with default="CM". For
the number of arcs, loops are not allowed so arcs are only possible for points inside the tetrahedron
th for this function.

See also (Ceyhan (2005, 2010)).

Usage

num.arcsPEtetra(Xp, th, r, M = "CM")

Arguments

Xp A set of 3D points which constitute the vertices of PE-PCD.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

Value

A list with the elements

desc A short description of the output: number of arcs and quantities related to the
tetrahedron

num.arcs Number of arcs of the PE-PCD

num.in.tetra Number of Xp points in the tetrahedron, th

ind.in.tetra The vector of indices of the Xp points that reside in the tetrahedron

338 num.arcsPEtri

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the support tetrahedron.

vertices Vertices of the digraph, Xp.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

num.arcsPEtri, num.arcsCStri, and num.arcsAStri

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

n<-10 #try also n<-20
set.seed(1)
Xp<-runif.tetra(n,tetra)$g

M<-"CM" #try also M<-"CC"
r<-1.25

Narcs = num.arcsPEtetra(Xp,tetra,r,M)
Narcs
summary(Narcs)
#plot(Narcs)

End(Not run)

num.arcsPEtri Number of arcs of Proportional Edge Proximity Catch Digraphs (PE-
PCDs) and quantities related to the triangle - one triangle case

num.arcsPEtri 339

Description

An object of class "NumArcs". Returns the number of arcs of Proportional Edge Proximity Catch
Digraphs (PE-PCDs) whose vertices are the given 2D numerical data set, Xp. It also provides
number of vertices (i.e., number of data points inside the triangle) and indices of the data points that
reside in the triangle.

PE proximity region NPE(x, r) is defined with respect to the triangle, tri with expansion param-
eter r ≥ 1 and vertex regions are based on the center M = (m1,m2) in Cartesian coordinates or
M = (α, β, γ) in barycentric coordinates in the interior of the triangle tri or based on circumcen-
ter of tri; default is M = (1, 1, 1), i.e., the center of mass of tri. For the number of arcs, loops
are not allowed so arcs are only possible for points inside the triangle tri for this function.

See also (Ceyhan (2005, 2016)).

Usage

num.arcsPEtri(Xp, tri, r, M = c(1, 1, 1))

Arguments

Xp A set of 2D points which constitute the vertices of PE-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; default is M = (1, 1, 1), i.e., the
center of mass of tri.

Value

A list with the elements

desc A short description of the output: number of arcs and quantities related to the
triangle

num.arcs Number of arcs of the PE-PCD

num.in.tri Number of Xp points in the triangle, tri

ind.in.tri The vector of indices of the Xp points that reside in the triangle

tess.points Points on which the tessellation of the study region is performed, here, tessella-
tion is the support triangle.

vertices Vertices of the digraph, Xp.

Author(s)

Elvan Ceyhan

340 num.delaunay.tri

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2016). “Edge Density of New Graph Types Based on a Random Digraph Family.”
Statistical Methodology, 33, 31-54.

See Also

num.arcsPEstd.tri, num.arcsPE, num.arcsCStri, and num.arcsAStri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

n<-10 #try also n<-20
set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

Narcs = num.arcsPEtri(Xp,Tr,r=1.25,M)
Narcs
summary(Narcs)
plot(Narcs)

End(Not run)

num.delaunay.tri Number of Delaunay triangles based on a 2D data set

Description

Returns the number of Delaunay triangles based on the 2D set of points Yp. See (Okabe et al.
(2000); Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

Usage

num.delaunay.tri(Yp)

Arguments

Yp A set of 2D points which constitute the vertices of Delaunay triangles.

paraline 341

Value

Number of Delaunay triangles based on Yp points.

Author(s)

Elvan Ceyhan

References

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applications
of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

plotDelaunay.tri

Examples

ny<-10

set.seed(1)
Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

num.delaunay.tri(Yp)

paraline The line at a point p parallel to the line segment joining two distinct
2D points a and b

Description

An object of class "Lines". Returns the equation, slope, intercept, and y-coordinates of the
line crossing the point p and parallel to the line passing through the points a and b with x-coordinates
are provided in vector x.

Usage

paraline(p, a, b, x)

Arguments

p A 2D point at which the parallel line to line segment joining a and b crosses.
a, b 2D points that determine the line segment (the line will be parallel to this line

segment).
x A scalar or a vector of scalars representing the x-coordinates of the line parallel

to ab and crossing p.

342 paraline

Value

A list with the elements

desc Description of the line passing through point p and parallel to line segment join-
ing a and b

mtitle The "main" title for the plot of the line passing through point p and parallel to
line segment joining a and b

points The input points p, a, and b (stacked row-wise, i.e., point p is in row 1, point a
is in row 2 and point b is in row 3). Line parallel to ab crosses p.

x The input vector. It can be a scalar or a vector of scalars, which constitute the
x-coordinates of the point(s) of interest on the line passing through point p and
parallel to line segment joining a and b.

y The output scalar or vector which constitutes the y-coordinates of the point(s)
of interest on the line passing through point p and parallel to line segment joining
a and b. If x is a scalar, then y will be a scalar and if x is a vector of scalars,
then y will be a vector of scalars.

slope Slope of the line, Inf is allowed, passing through point p and parallel to line
segment joining a and b

intercept Intercept of the line passing through point p and parallel to line segment joining
a and b

equation Equation of the line passing through point p and parallel to line segment joining
a and b

Author(s)

Elvan Ceyhan

See Also

slope, Line, and perpline, line in the generic stats package, and paraline3D

Examples

Not run:
A<-c(1.1,1.2); B<-c(2.3,3.4); p<-c(.51,2.5)

paraline(p,A,B,.45)

pts<-rbind(A,B,p)
xr<-range(pts[,1])
xf<-(xr[2]-xr[1])*.25
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20, or 100

plnAB<-paraline(p,A,B,x)
plnAB
summary(plnAB)
plot(plnAB)

paraline3D 343

y<-plnAB$y
Xlim<-range(x,pts[,1])
if (!is.na(y[1])) {Ylim<-range(y,pts[,2])} else {Ylim<-range(pts[,2])}
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
pf<-c(xd,-yd)*.025

plot(A,pch=".",xlab="",ylab="",main="Line Crossing P and Parallel to AB",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(pts)
txt.str<-c("A","B","p")
text(pts+rbind(pf,pf,pf),txt.str)

segments(A[1],A[2],B[1],B[2],lty=2)
if (!is.na(y[1])) {lines(x,y,type="l",lty=1,xlim=Xlim,ylim=Ylim)} else {abline(v=p[1])}
tx<-(A[1]+B[1])/2;
if (!is.na(y[1])) {ty<-paraline(p,A,B,tx)$y} else {ty=p[2]}
text(tx,ty,"line parallel to AB\n and crossing p")

End(Not run)

paraline3D The line crossing the 3D point p and parallel to line joining 3D points
a and b

Description

An object of class "Lines3D". Returns the equation, x-, y-, and z-coordinates of the line crossing
3D point p and parallel to the line joining 3D points a and b (i.e., the line is in the direction of
vector b-a) with the parameter t being provided in vector t.

Usage

paraline3D(p, a, b, t)

Arguments

p A 3D point through which the straight line passes.

a, b 3D points which determine the straight line to which the line passing through
point p would be parallel (i.e., b− a determines the direction of the straight line
passing through p).

t A scalar or a vector of scalars representing the parameter of the coordinates of
the line (for the form: x = p0 + At, y = y0 + Bt, and z = z0 + Ct where
p = (p0, y0, z0) and b− a = (A,B,C)).

344 paraline3D

Value

A list with the elements

desc A description of the line

mtitle The "main" title for the plot of the line

points The input points that determine the line to which the line crossing point p would
be parallel.

pnames The names of the input points that determine the line to which the line crossing
point p would be parallel.

vecs The points p, a, and b stacked row-wise in this order.

vec.names The names of the points p, a, and b.

x, y, z The x-, y-, and z-coordinates of the point(s) of interest on the line parallel to the
line determined by points a and b.

tsq The scalar or the vector of the parameter in defining each coordinate of the line
for the form: x = p0+At, y = y0+Bt, and z = z0+Ct where p = (p0, y0, z0)
and b− a = (A,B,C).

equation Equation of the line passing through point p and parallel to the line joining
points a and b (i.e., in the direction of the vector b-a). The line equation is in
the form: x = p0 + At, y = y0 + Bt, and z = z0 + Ct where p = (p0, y0, z0)
and b− a = (A,B,C).

Author(s)

Elvan Ceyhan

See Also

Line3D, perpline2plane, and paraline

Examples

Not run:
P<-c(1,10,4); Q<-c(1,1,3); R<-c(3,9,12)

vecs<-rbind(P,R-Q)
pts<-rbind(P,Q,R)
paraline3D(P,Q,R,.1)

tr<-range(pts,vecs);
tf<-(tr[2]-tr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf*10-tf,tf*10+tf,l=5) #try also l=10, 20, or 100

pln3D<-paraline3D(P,Q,R,tsq)
pln3D
summary(pln3D)
plot(pln3D)

paraplane 345

x<-pln3D$x
y<-pln3D$y
z<-pln3D$z

zr<-range(z)
zf<-(zr[2]-zr[1])*.2
Qv<-(R-Q)*tf*5

Xlim<-range(x,pts[,1])
Ylim<-range(y,pts[,2])
Zlim<-range(z,pts[,3])

xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

Dr<-P+min(tsq)*(R-Q)

plot3D::lines3D(x, y, z, phi = 0, bty = "g",
main="Line Crossing P \n in the direction of R-Q",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.1,.1)+c(-zf,zf),

pch = 20, cex = 2, ticktype = "detailed")
plot3D::arrows3D(Dr[1],Dr[2],Dr[3]+zf,Dr[1]+Qv[1],
Dr[2]+Qv[2],Dr[3]+zf+Qv[3], add=TRUE)
plot3D::points3D(pts[,1],pts[,2],pts[,3],add=TRUE)
plot3D::text3D(pts[,1],pts[,2],pts[,3],labels=c("P","Q","R"),add=TRUE)
plot3D::arrows3D(P[1],P[2],P[3]-2*zf,P[1],P[2],P[3],lty=2, add=TRUE)
plot3D::text3D(P[1],P[2],P[3]-2*zf,labels="initial point",add=TRUE)
plot3D::arrows3D(Dr[1]+Qv[1]/2,Dr[2]+Qv[2]/2,
Dr[3]+3*zf+Qv[3]/2,Dr[1]+Qv[1]/2,
Dr[2]+Qv[2]/2,Dr[3]+zf+Qv[3]/2,lty=2, add=TRUE)
plot3D::text3D(Dr[1]+Qv[1]/2,Dr[2]+Qv[2]/2,Dr[3]+3*zf+Qv[3]/2,
labels="direction vector",add=TRUE)
plot3D::text3D(Dr[1]+Qv[1]/2,Dr[2]+Qv[2]/2,
Dr[3]+zf+Qv[3]/2,labels="R-Q",add=TRUE)

End(Not run)

paraplane The plane at a point and parallel to the plane spanned by three distinct
3D points a, b, and c

Description

An object of class "Planes". Returns the equation and z-coordinates of the plane passing through
point p and parallel to the plane spanned by three distinct 3D points a, b, and c with x- and y-
coordinates are provided in vectors x and y, respectively.

346 paraplane

Usage

paraplane(p, a, b, c, x, y)

Arguments

p A 3D point which the plane parallel to the plane spanned by three distinct 3D
points a, b, and c crosses.

a, b, c 3D points that determine the plane to which the plane crossing point p is parallel
to.

x, y Scalars or vectors of scalars representing the x- and y-coordinates of the plane
parallel to the plane spanned by points a, b, and c and passing through point p.

Value

A list with the elements

desc Description of the plane passing through point p and parallel to plane spanned
by points a, b and c

points The input points a, b, c, and p. Plane is parallel to the plane spanned by a, b,
and c and passes through point p (stacked row-wise, i.e., row 1 is point a, row 2
is point b, row 3 is point c, and row 4 is point p).

x, y The input vectors which constitutes the x- and y-coordinates of the point(s) of
interest on the plane. x and y can be scalars or vectors of scalars.

z The output vector which constitutes the z-coordinates of the point(s) of interest
on the plane. If x and y are scalars, z will be a scalar and if x and y are vectors
of scalars, then z needs to be a matrix of scalars, containing the z-coordinate
for each pair of x and y values.

coeff Coefficients of the plane (in the z = Ax+By + C form).

equation Equation of the plane in long form

equation2 Equation of the plane in short form, to be inserted on the plot

Author(s)

Elvan Ceyhan

See Also

Plane

Examples

Not run:
Q<-c(1,10,3); R<-c(1,1,3); S<-c(3,9,12); P<-c(1,1,0)

pts<-rbind(Q,R,S,P)
paraplane(P,Q,R,S,.1,.2)

pcds 347

xr<-range(pts[,1]); yr<-range(pts[,2])
xf<-(xr[2]-xr[1])*.25
#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*.25
#how far to go at the lower and upper ends in the y-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20, or 100
y<-seq(yr[1]-yf,yr[2]+yf,l=5) #try also l=10, 20, or 100

plP2QRS<-paraplane(P,Q,R,S,x,y)
plP2QRS
summary(plP2QRS)
plot(plP2QRS,theta = 225, phi = 30, expand = 0.7, facets = FALSE, scale = TRUE)

paraplane(P,Q,R,Q+R,.1,.2)

z.grid<-plP2QRS$z

plQRS<-Plane(Q,R,S,x,y)
plQRS
pl.grid<-plQRS$z

zr<-max(z.grid)-min(z.grid)
Pts<-rbind(Q,R,S,P)+rbind(c(0,0,zr*.1),c(0,0,zr*.1),
c(0,0,zr*.1),c(0,0,zr*.1))
Mn.pts<-apply(Pts[1:3,],2,mean)

plot3D::persp3D(z = pl.grid, x = x, y = y, theta =225, phi = 30,
ticktype = "detailed",
main="Plane Crossing Points Q, R, S\n and Plane Passing P Parallel to it")
#plane spanned by points Q, R, S
plot3D::persp3D(z = z.grid, x = x, y = y,add=TRUE)
#plane parallel to the original plane and passing thru point \code{P}

plot3D::persp3D(z = z.grid, x = x, y = y, theta =225, phi = 30,
ticktype = "detailed",
main="Plane Crossing Point P \n and Parallel to the Plane Crossing Q, R, S")
#plane spanned by points Q, R, S
#add the defining points
plot3D::points3D(Pts[,1],Pts[,2],Pts[,3], add=TRUE)
plot3D::text3D(Pts[,1],Pts[,2],Pts[,3], c("Q","R","S","P"),add=TRUE)
plot3D::text3D(Mn.pts[1],Mn.pts[2],Mn.pts[3],plP2QRS$equation,add=TRUE)
plot3D::polygon3D(Pts[1:3,1],Pts[1:3,2],Pts[1:3,3], add=TRUE)

End(Not run)

pcds pcds: A package for Proximity Catch Digraphs and Their Applications

348 pcds

Description

pcds is a package for construction and visualization of proximity catch digraphs (PCDs) and com-
putation of two graph invariants of the PCDs and testing spatial patterns using these invariants.
The PCD families considered are Arc-Slice (AS) PCDs, Proportional-Edge (PE) PCDs and Central
Similarity (CS) PCDs.

Details

The graph invariants used in testing spatial point data are the domination number (Ceyhan (2011))
and arc density (Ceyhan et al. (2006); Ceyhan et al. (2007)) of for two-dimensional data.

The pcds package also contains the functions for generating patterns of segregation, association,
CSR (complete spatial randomness) and Uniform data in one, two and three dimensional cases, for
testing these patterns based on two invariants of various families of the proximity catch digraphs
(PCDs), (see (Ceyhan (2005)).

Moreover, the package has visualization tools for these digraphs for 1D-3D vertices. The AS-PCD
related tools are provided for 1D and 2D data; PE-PCD related tools are provided for 1D-3D data,
and CS-PCD tools are provided for 1D and 2D data.

The pcds functions

The pcds functions can be grouped as Auxiliary Functions, AS-PCD Functions, PE-PCD Functions,
and CS-PCD Functions.

Auxiliary Functions

Contains the auxiliary (or utility) functions for constructing and visualizing Delaunay tessellations
in 1D and 2D settings, computing the domination number, constructing the geometrical tools, such
as equation of lines for two points, distances between lines and points, checking points inside the
triangle etc., finding the (local) extrema (restricted to Delaunay cells or vertex or edge regions in
them).

Arc-Slice PCD Functions

Contains the functions used in AS-PCD construction, estimation of domination number, arc density,
etc in the 2D setting.

Proportional-Edge PCD Functions

Contains the functions used in PE-PCD construction, estimation of domination number, arc density,
etc in the 1D-3D settings.

Central-Similarity PCD Functions

Contains the functions used in CS-PCD construction, estimation of domination number, arc density,
etc in the 1D and 2D setting.

Pdom.num2PE1Dasy 349

Point Generation Functions

Contains functions for generation of points from uniform (or CSR), segregation and association
patterns.

In all these functions points are vectors, and data sets are either matrices or data frames.

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

Pdom.num2PE1Dasy The asymptotic probability of domination number = 2 for Propor-
tional Edge Proximity Catch Digraphs (PE-PCDs) - middle interval
case

Description

Returns the asymptotic P (domination number≤ 1) for PE-PCD whose vertices are a uniform data
set in a finite interval (a, b).

The PE proximity region NPE(x, r, c) is defined with respect to (a, b) with centrality parameter c
in (0, 1) and expansion parameter r = 1/max(c, 1− c).

Usage

Pdom.num2PE1Dasy(c)

Arguments

c A positive real number in (0, 1) parameterizing the center inside int= (a, b).
For the interval, (a, b), the parameterized center is Mc = a+ c(b− a).

Value

The asymptotic P (domination number≤ 1) for PE-PCD whose vertices are a uniform data set in a
finite interval (a, b)

350 Pdom.num2PEtri

Author(s)

Elvan Ceyhan

See Also

Pdom.num2PE1D and Pdom.num2PEtri

Examples

c<-.5

Pdom.num2PE1Dasy(c)

Pdom.num2PE1Dasy(c=1/1.5)
Pdom.num2PE1D(r=1.5,c=1/1.5,n=10)
Pdom.num2PE1D(r=1.5,c=1/1.5,n=100)

Pdom.num2PEtri Asymptotic probability that domination number of Proportional Edge
Proximity Catch Digraphs (PE-PCDs) equals 2 where vertices of the
digraph are uniform points in a triangle

Description

Returns P (domination number= 2) for PE-PCD for uniform data in a triangle, when the sample
size n goes to infinity (i.e., asymptotic probability of domination number = 2).

PE proximity regions are constructed with respect to the triangle with the expansion parameter
r ≥ 1 and M -vertex regions where M is the vertex that renders the asymptotic distribution of the
domination number non-degenerate for the given value of r in (1, 1.5].

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011)).

Usage

Pdom.num2PEtri(r)

Arguments

r A positive real number which serves as the expansion parameter in PE proximity
region; must be in (1, 1.5] to attain non-degenerate asymptotic distribution for
the domination number.

Value

P (domination number= 2) for PE-PCD for uniform data on an triangle as the sample size n goes
to infinity

PEarc.dens.test 351

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

See Also

Pdom.num2PE1D

Examples

Not run:
Pdom.num2PEtri(r=1.5)
Pdom.num2PEtri(r=1.4999999999)

Pdom.num2PEtri(r=1.5) / Pdom.num2PEtri(r=1.4999999999)

rseq<-seq(1.01,1.49999999999,l=20) #try also l=100
lrseq<-length(rseq)

pg2<-vector()
for (i in 1:lrseq)
{

pg2<-c(pg2,Pdom.num2PEtri(rseq[i]))
}

plot(rseq, pg2,type="l",xlab="r",
ylab=expression(paste("P(", gamma, "=2)")),

lty=1,xlim=range(rseq)+c(0,.01),ylim=c(0,1))
points(rbind(c(1.50,Pdom.num2PEtri(1.50))),pch=".",cex=3)

End(Not run)

PEarc.dens.test A test of segregation/association based on arc density of Proportional
Edge Proximity Catch Digraph (PE-PCD) for 2D data

352 PEarc.dens.test

Description

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of
complete spatial randomness (CSR) or uniformity of Xp points in the convex hull of Yp points
against the alternatives of segregation (where Xp points cluster away from Yp points) and association
(where Xp points cluster around Yp points) based on the normal approximation of the arc density of
the PE-PCD for uniform 2D data.

The function yields the test statistic, p-value for the corresponding alternative, the confidence
interval, estimate and null value for the parameter of interest (which is the arc density), and method
and name of the data set used.

Under the null hypothesis of uniformity of Xp points in the convex hull of Yp points, arc density
of PE-PCD whose vertices are Xp points equals to its expected value under the uniform distribu-
tion and alternative could be two-sided, or left-sided (i.e., data is accumulated around the Yp
points, or association) or right-sided (i.e., data is accumulated around the centers of the triangles, or
segregation).

PE proximity region is constructed with the expansion parameter r ≥ 1 and CM -vertex regions
(i.e., the test is not available for a general center M at this version of the function).

Caveat: This test is currently a conditional test, where Xp points are assumed to be random,
while Yp points are assumed to be fixed (i.e., the test is conditional on Yp points). Furthermore,
the test is a large sample test when Xp points are substantially larger than Yp points, say at least 5
times more. This test is more appropriate when supports of Xp and Yp have a substantial overlap.
Currently, the Xp points outside the convex hull of Yp points are handled with a convex hull correc-
tion factor (see the description below and the function code.) However, in the special case of no
Xp points in the convex hull of Yp points, arc density is taken to be 1, as this is clearly a case of
segregation. Removing the conditioning and extending it to the case of non-concurring supports is
an ongoing topic of research of the author of the package.

ch.cor is for convex hull correction (default is "no convex hull correction", i.e., ch.cor=FALSE)
which is recommended when both Xp and Yp have the same rectangular support.

See also (Ceyhan (2005); Ceyhan et al. (2006)) for more on the test based on the arc density of
PE-PCDs.

Usage

PEarc.dens.test(
Xp,
Yp,
r,
ch.cor = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95

)

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

PEarc.dens.test 353

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

ch.cor A logical argument for convex hull correction, default ch.cor=FALSE, recom-
mended when both Xp and Yp have the same rectangular support.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater".

conf.level Level of the confidence interval, default is 0.95, for the arc density of PE-PCD
based on the 2D data set Xp.

Value

A list with the elements

statistic Test statistic

p.value The p-value for the hypothesis test for the corresponding alternative

conf.int Confidence interval for the arc density at the given confidence level conf.level
and depends on the type of alternative.

estimate Estimate of the parameter, i.e., arc density

null.value Hypothesized value for the parameter, i.e., the null arc density, which is usually
the mean arc density under uniform distribution.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater"

method Description of the hypothesis test

data.name Name of the data set

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

CSarc.dens.test and PEarc.dens.test1D

354 PEarc.dens.test.int

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

plotDelaunay.tri(Xp,Yp,xlab="",ylab="")

PEarc.dens.test(Xp,Yp,r=1.25)
PEarc.dens.test(Xp,Yp,r=1.25,ch=TRUE)
#since Y points are not uniform, convex hull correction is invalid here

End(Not run)

PEarc.dens.test.int A test of uniformity of 1D data in a given interval based on Propor-
tional Edge Proximity Catch Digraph (PE-PCD)

Description

An object of class "htest". This is an "htest" (i.e., hypothesis test) function which performs a
hypothesis test of uniformity of 1D data in one interval based on the normal approximation of the
arc density of the PE-PCD with expansion parameter r ≥ 1 and centrality parameter c ∈ (0, 1).

The function yields the test statistic, p-value for the corresponding alternative, the confidence
interval, estimate and null value for the parameter of interest (which is the arc density), and method
and name of the data set used.

The null hypothesis is that data is uniform in a finite interval (i.e., arc density of PE-PCD equals to
its expected value under uniform distribution) and alternative could be two-sided, or left-sided
(i.e., data is accumulated around the end points) or right-sided (i.e., data is accumulated around the
mid point or center Mc).

See also (Ceyhan (2012, 2016)).

Usage

PEarc.dens.test.int(
Xp,
int,
r,
c = 0.5,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95

)

PEarc.dens.test.int 355

Arguments

Xp A set or vector of 1D points which constitute the vertices of PE-PCD.

int A vector of two real numbers representing an interval.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater".

conf.level Level of the confidence interval, default is 0.95, for the arc density of PE-PCD
based on the 1D data set Xp.

Value

A list with the elements

statistic Test statistic

p.value The p-value for the hypothesis test for the corresponding alternative

conf.int Confidence interval for the arc density at the given confidence level conf.level
and depends on the type of alternative.

estimate Estimate of the parameter, i.e., arc density

null.value Hypothesized value for the parameter, i.e., the null arc density, which is usually
the mean arc density under uniform distribution.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater"

method Description of the hypothesis test

data.name Name of the data set

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch Di-
graph Based on Uniform Data.” Metrika, 75(6), 761-793.

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

CSarc.dens.test.int

356 PEarc.dens.test1D

Examples

Not run:
c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

n<-100 #try also n<-20, 1000
Xp<-runif(n,a,b)

PEarc.dens.test.int(Xp,int,r,c)
PEarc.dens.test.int(Xp,int,r,c,alt="g")
PEarc.dens.test.int(Xp,int,r,c,alt="l")

End(Not run)

PEarc.dens.test1D A test of segregation/association based on arc density of Proportional
Edge Proximity Catch Digraph (PE-PCD) for 1D data

Description

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of
complete spatial randomness (CSR) or uniformity of Xp points in the range (i.e., range) of Yp points
against the alternatives of segregation (where Xp points cluster away from Yp points) and association
(where Xp points cluster around Yp points) based on the normal approximation of the arc density of
the PE-PCD for uniform 1D data.

The function yields the test statistic, p-value for the corresponding alternative, the confidence
interval, estimate and null value for the parameter of interest (which is the arc density), and method
and name of the data set used.

Under the null hypothesis of uniformity of Xp points in the range of Yp points, arc density of PE-
PCD whose vertices are Xp points equals to its expected value under the uniform distribution and
alternative could be two-sided, or left-sided (i.e., data is accumulated around the Yp points, or
association) or right-sided (i.e., data is accumulated around the centers of the intervals, or segrega-
tion).

PE proximity region is constructed with the expansion parameter r ≥ 1 and centrality parameter
c which yields M -vertex regions. More precisely, for a middle interval (y(i), y(i+1)), the center is
M = y(i) + c(y(i+1) − y(i)) for the centrality parameter c ∈ (0, 1).

Caveat: This test is currently a conditional test, where Xp points are assumed to be random,
while Yp points are assumed to be fixed (i.e., the test is conditional on Yp points). Furthermore,
the test is a large sample test when Xp points are substantially larger than Yp points, say at least 5
times more. This test is more appropriate when supports of Xp and Yp have a substantial overlap.
Currently, the Xp points outside the range of Yp points are handled with a range correction (or end
interval correction) factor (see the description below and the function code.) However, in the special
case of no Xp points in the range of Yp points, arc density is taken to be 1, as this is clearly a case of

PEarc.dens.test1D 357

segregation. Removing the conditioning and extending it to the case of non-concurring supports is
an ongoing line of research of the author of the package.

end.int.cor is for end interval correction, (default is "no end interval correction", i.e., end.int.cor=FALSE),
recommended when both Xp and Yp have the same interval support.

See also (Ceyhan (2012)) for more on the uniformity test based on the arc density of PE-PCDs.

Usage

PEarc.dens.test1D(
Xp,
Yp,
r,
c = 0.5,
support.int = NULL,
end.int.cor = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95

)

Arguments

Xp A set of 1D points which constitute the vertices of the PE-PCD.

Yp A set of 1D points which constitute the end points of the partition intervals.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number which serves as the centrality parameter in PE proximity
region; must be in (0, 1) (default c=.5).

support.int Support interval (a, b) with a < b. Uniformity of Xp points in this interval is
tested. Default is NULL.

end.int.cor A logical argument for end interval correction, default is FALSE, recommended
when both Xp and Yp have the same interval support.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater".

conf.level Level of the confidence interval, default is 0.95, for the arc density PE-PCD
whose vertices are the 1D data set Xp.

Value

A list with the elements

statistic Test statistic

p.value The p-value for the hypothesis test for the corresponding alternative.

conf.int Confidence interval for the arc density at the given confidence level conf.level
and depends on the type of alternative.

estimate Estimate of the parameter, i.e., arc density

358 PEarc.dens.test1D

null.value Hypothesized value for the parameter, i.e., the null arc density, which is usually
the mean arc density under uniform distribution.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater"

method Description of the hypothesis test

data.name Name of the data set

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

PEarc.dens.test, PEdom.num.binom.test1D, and PEarc.dens.test.int

Examples

Not run:
r<-2
c<-.4
a<-0; b<-10; int=c(a,b)

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xf<-(int[2]-int[1])*.1

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

PEarc.dens.test1D(Xp,Yp,r,c,int)
#try also PEarc.dens.test1D(Xp,Yp,r,c,int,alt="l") and PEarc.dens.test1D(Xp,Yp,r,c,int,alt="g")

PEarc.dens.test1D(Xp,Yp,r,c,int,end.int.cor = TRUE)

End(Not run)

PEarc.dens.tetra 359

PEarc.dens.tetra Arc density of Proportional Edge Proximity Catch Digraphs (PE-
PCDs) - one tetrahedron case

Description

Returns the arc density of PE-PCD whose vertex set is the given 2D numerical data set, Xp, (some
of its members are) in the tetrahedron th.

PE proximity region is constructed with respect to the tetrahedron th and vertex regions are based
on the center M which is circumcenter ("CC") or center of mass ("CM") of th with default="CM". For
the number of arcs, loops are not allowed so arcs are only possible for points inside the tetrahedron
th for this function.

th.cor is a logical argument for tetrahedron correction (default is TRUE), if TRUE, only the points
inside the tetrahedron are considered (i.e., digraph induced by these vertices are considered) in
computing the arc density, otherwise all points are considered (for the number of vertices in the
denominator of arc density).

See also (Ceyhan (2005, 2010)).

Usage

PEarc.dens.tetra(Xp, th, r, M = "CM", th.cor = FALSE)

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

th.cor A logical argument for computing the arc density for only the points inside the
tetrahedron, th. (default is th.cor=FALSE), i.e., if th.cor=TRUE only the in-
duced digraph with the vertices inside th are considered in the computation of
arc density.

Value

Arc density of PE-PCD whose vertices are the 2D numerical data set, Xp; PE proximity regions are
defined with respect to the tetrahedron th and M-vertex regions

Author(s)

Elvan Ceyhan

360 PEarc.dens.tri

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

PEarc.dens.tri and num.arcsPEtetra

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tetra(n,tetra)$g

M<-"CM" #try also M<-"CC"
r<-1.5

num.arcsPEtetra(Xp,tetra,r,M)
PEarc.dens.tetra(Xp,tetra,r,M)
PEarc.dens.tetra(Xp,tetra,r,M,th.cor = FALSE)

End(Not run)

PEarc.dens.tri Arc density of Proportional Edge Proximity Catch Digraphs (PE-
PCDs) - one triangle case

Description

Returns the arc density of PE-PCD whose vertex set is the given 2D numerical data set, Xp, (some
of its members are) in the triangle tri.

PE proximity regions is defined with respect to tri with expansion parameter r ≥ 1 and ver-
tex regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in
barycentric coordinates in the interior of the triangle tri or based on circumcenter of tri; default
is M = (1, 1, 1), i.e., the center of mass of tri. The function also provides arc density standardized
by the mean and asymptotic variance of the arc density of PE-PCD for uniform data in the triangle
tri only when M is the center of mass. For the number of arcs, loops are not allowed.

tri.cor is a logical argument for triangle correction (default is TRUE), if TRUE, only the points inside
the triangle are considered (i.e., digraph induced by these vertices are considered) in computing the

PEarc.dens.tri 361

arc density, otherwise all points are considered (for the number of vertices in the denominator of
arc density).

See also (Ceyhan (2005); Ceyhan et al. (2006)).

Usage

PEarc.dens.tri(Xp, tri, r, M = c(1, 1, 1), tri.cor = FALSE)

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; default is M = (1, 1, 1), i.e., the
center of mass of tri.

tri.cor A logical argument for computing the arc density for only the points inside the
triangle, tri. (default is tri.cor=FALSE), i.e., if tri.cor=TRUE only the in-
duced digraph with the vertices inside tri are considered in the computation of
arc density.

Value

A list with the elements

arc.dens Arc density of PE-PCD whose vertices are the 2D numerical data set, Xp; PE
proximity regions are defined with respect to the triangle tri and M-vertex re-
gions

std.arc.dens Arc density standardized by the mean and asymptotic variance of the arc density
of PE-PCD for uniform data in the triangle tri. This will only be returned, if M
is the center of mass.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

362 PEdom.num

See Also

ASarc.dens.tri, CSarc.dens.tri, and num.arcsPEtri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

num.arcsPEtri(Xp,Tr,r=1.5,M)
PEarc.dens.tri(Xp,Tr,r=1.5,M)
PEarc.dens.tri(Xp,Tr,r=1.5,M,tri.cor = TRUE)

End(Not run)

PEdom.num The domination number of Proportional Edge Proximity Catch Di-
graph (PE-PCD) - multiple triangle case

Description

Returns the domination number, indices of a minimum dominating set of PE-PCD whose vertices
are the data points in Xp in the multiple triangle case and domination numbers for the Delaunay
triangles based on Yp points.

PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with ex-
pansion parameter r ≥ 1 and vertex regions in each triangle are based on the center M = (α, β, γ)
in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of
each Delaunay triangle (default for M = (1, 1, 1) which is the center of mass of the triangle). Each
Delaunay triangle is first converted to an (nonscaled) basic triangle so that M will be the same type
of center for each Delaunay triangle (this conversion is not necessary when M is CM).

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). Loops
are allowed for the domination number.

See (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)) for more on the domination
number of PE-PCDs. Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on
Delaunay triangulation and the corresponding algorithm.

Usage

PEdom.num(Xp, Yp, r, M = c(1, 1, 1))

PEdom.num 363

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 3D point in barycentric coordinates which serves as a center in the interior
of each Delaunay triangle or circumcenter of each Delaunay triangle (for this,
argument should be set as M="CC"), default for M = (1, 1, 1) which is the center
of mass of each triangle.

Value

A list with three elements

dom.num Domination number of the PE-PCD whose vertices are Xp points. PE proximity
regions are constructed with respect to the Delaunay triangles based on the Yp
points with expansion parameter r ≥ 1.

#

mds A minimum dominating set of the PE-PCD whose vertices are Xp points

ind.mds The vector of data indices of the minimum dominating set of the PE-PCD whose
vertices are Xp points.

tri.dom.nums The vector of domination numbers of the PE-PCD components for the Delaunay
triangles.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

364 PEdom.num.binom.test

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

PEdom.num.tri, PEdom.num.tetra, dom.num.exact, and dom.num.greedy

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)
r<-1.5 #try also r<-2
PEdom.num(Xp,Yp,r,M)

End(Not run)

PEdom.num.binom.test A test of segregation/association based on domination number of Pro-
portional Edge Proximity Catch Digraph (PE-PCD) for 2D data - Bi-
nomial Approximation

Description

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of
complete spatial randomness (CSR) or uniformity of Xp points in the convex hull of Yp points
against the alternatives of segregation (where Xp points cluster away from Yp points i.e., cluster
around the centers of the Delaunay triangles) and association (where Xp points cluster around Yp
points) based on the (asymptotic) binomial distribution of the domination number of PE-PCD for
uniform 2D data in the convex hull of Yp points.

The function yields the test statistic, p-value for the corresponding alternative, the confidence
interval, estimate and null value for the parameter of interest (which is Pr(domination number≤
2)), and method and name of the data set used.

Under the null hypothesis of uniformity of Xp points in the convex hull of Yp points, probability of
success (i.e., Pr(domination number≤ 2)) equals to its expected value under the uniform distribu-
tion) and alternative could be two-sided, or right-sided (i.e., data is accumulated around the Yp

PEdom.num.binom.test 365

points, or association) or left-sided (i.e., data is accumulated around the centers of the triangles, or
segregation).

PE proximity region is constructed with the expansion parameter r ≥ 1 and M -vertex regions
where M is a center that yields non-degenerate asymptotic distribution of the domination number.

The test statistic is based on the binomial distribution, when success is defined as domination num-
ber being less than or equal to 2 in the one triangle case (i.e., number of failures is equal to number
of times restricted domination number = 3 in the triangles). That is, the test statistic is based on
the domination number for Xp points inside convex hull of Yp points for the PE-PCD and default
convex hull correction, ch.cor, is FALSE where M is the center that yields nondegenerate asymptotic
distribution for the domination number. For this approximation to work, number of Xp points must
be at least 7 times more than number of Yp points.

PE proximity region is constructed with the expansion parameter r ≥ 1 and CM -vertex regions
(i.e., the test is not available for a general center M at this version of the function).

Caveat: This test is currently a conditional test, where Xp points are assumed to be random,
while Yp points are assumed to be fixed (i.e., the test is conditional on Yp points). Furthermore,
the test is a large sample test when Xp points are substantially larger than Yp points, say at least 7
times more. This test is more appropriate when supports of Xp and Yp have a substantial overlap.
Currently, the Xp points outside the convex hull of Yp points are handled with a convex hull cor-
rection factor (see the description below and the function code.) Removing the conditioning and
extending it to the case of non-concurring supports is an ongoing topic of research of the author of
the package.

See also (Ceyhan (2011)).

Usage

PEdom.num.binom.test(
Xp,
Yp,
r,
ch.cor = FALSE,
ndt = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95

)

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be in (1, 1.5].

ch.cor A logical argument for convex hull correction, default ch.cor=FALSE, recom-
mended when both Xp and Yp have the same rectangular support.

ndt Number of Delaunay triangles based on Yp points, default is NULL.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater".

366 PEdom.num.binom.test

conf.level Level of the confidence interval, default is 0.95, for the probability of success
(i.e., Pr(domination number= 3) for PE-PCD whose vertices are the 2D data
set Xp.

Value

A list with the elements

statistic Test statistic

p.value The p-value for the hypothesis test for the corresponding alternative

conf.int Confidence interval for Pr(Domination Number≤ 2) at the given level conf.level
and depends on the type of alternative.

estimate A vector with two entries: first is is the estimate of the parameter, i.e., Pr(Domination
Number= 3) and second is the domination number

null.value Hypothesized value for the parameter, i.e., the null value for Pr(Domination
Number≤ 2)

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater"

method Description of the hypothesis test

data.name Name of the data set

Author(s)

Elvan Ceyhan

References

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

See Also

PEdom.num.norm.test

Examples

Not run:
nx<-100; ny<-5 #try also nx<-1000; ny<-10
r<-1.4 #try also r<-1.5

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

plotDelaunay.tri(Xp,Yp,xlab="",ylab="")
PEdom.num.binom.test(Xp,Yp,r) #try also #PEdom.num.binom.test(Xp,Yp,r,alt="l") and
PEdom.num.binom.test(Xp,Yp,r,alt="g")

PEdom.num.binom.test1D 367

PEdom.num.binom.test(Xp,Yp,r,ch=TRUE)

#or try
ndt<-num.delaunay.tri(Yp)
PEdom.num.binom.test(Xp,Yp,r,ndt=ndt)
#values might differ due to the random of choice of the three centers M1,M2,M3
#for the non-degenerate asymptotic distribution of the domination number

End(Not run)

PEdom.num.binom.test1D

A test of segregation/association based on domination number of Pro-
portional Edge Proximity Catch Digraph (PE-PCD) for 1D data - Bi-
nomial Approximation

Description

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of
complete spatial randomness (CSR) or uniformity of Xp points within the partition intervals based
on Yp points (both residing in the support interval (a, b)). The test is for testing the spatial interaction
between Xp and Yp points.

The null hypothesis is uniformity of Xp points on (ymin, ymax) (by default) where ymin and ymax

are minimum and maximum of Yp points, respectively. Yp determines the end points of the intervals
(i.e., partition the real line via its spacings called intervalization) where end points are the order
statistics of Yp points.

The alternatives are segregation (where Xp points cluster away from Yp points i.e., cluster around
the centers of the partition intervals) and association (where Xp points cluster around Yp points).
The test is based on the (asymptotic) binomial distribution of the domination number of PE-PCD
for uniform 1D data in the partition intervals based on Yp points.

The test by default is restricted to the range of Yp points, and so ignores Xp points outside this
range. However, a correction for the Xp points outside the range of Yp points is available by setting
end.int.cor=TRUE, which is recommended when both Xp and Yp have the same interval support.

The function yields the test statistic, p-value for the corresponding alternative, the confidence inter-
val, estimate and null value for the parameter of interest (which is Pr(domination number≤ 1)),
and method and name of the data set used.

Under the null hypothesis of uniformity of Xp points in the intervals based on Yp points, probability
of success (i.e., Pr(domination number≤ 1)) equals to its expected value) and alternative could
be two-sided, or left-sided (i.e., data is accumulated around the Yp points, or association) or right-
sided (i.e., data is accumulated around the centers of the partition intervals, or segregation).

PE proximity region is constructed with the expansion parameter r ≥ 1 and centrality parameter
c which yields M -vertex regions. More precisely, for a middle interval (y(i), y(i+1)), the center is
M = y(i) + c(y(i+1) − y(i)) for the centrality parameter c. For a given c ∈ (0, 1), the expansion
parameter r is taken to be 1/max(c, 1− c) which yields non-degenerate asymptotic distribution of
the domination number.

368 PEdom.num.binom.test1D

The test statistic is based on the binomial distribution, when success is defined as domination num-
ber being less than or equal to 1 in the one interval case (i.e., number of successes is equal to
domination number ≤ 1 in the partition intervals). That is, the test statistic is based on the dom-
ination number for Xp points inside range of Yp points (the domination numbers are summed over
the |Y p| − 1 middle intervals) for the PE-PCD and default end interval correction, end.int.cor,
is FALSE and the center Mc is chosen so that asymptotic distribution for the domination number is
nondegenerate. For this test to work, Xp must be at least 5 times more than Yp points (or Xp must be
at least 5 or more per partition interval). Probability of success is the exact probability of success
for the binomial distribution.

Caveat: This test is currently a conditional test, where Xp points are assumed to be random,
while Yp points are assumed to be fixed (i.e., the test is conditional on Yp points). Furthermore,
the test is a large sample test when Xp points are substantially larger than Yp points, say at least 7
times more. This test is more appropriate when supports of Xp and Yp have a substantial overlap.
Currently, the Xp points outside the range of Yp points are handled with an end interval correction
factor (see the description below and the function code.) Removing the conditioning and extending
it to the case of non-concurring supports is an ongoing line of research of the author of the package.

See also (Ceyhan (2020)) for more on the uniformity test based on the arc density of PE-PCDs.

Usage

PEdom.num.binom.test1D(
Xp,
Yp,
c = 0.5,
support.int = NULL,
end.int.cor = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95

)

Arguments

Xp A set of 1D points which constitute the vertices of the PE-PCD.

Yp A set of 1D points which constitute the end points of the partition intervals.

c A positive real number which serves as the centrality parameter in PE proximity
region; must be in (0, 1) (default c=.5).

support.int Support interval (a, b) with a < b. Uniformity of Xp points in this interval is
tested. Default is NULL.

end.int.cor A logical argument for end interval correction, default is FALSE, recommended
when both Xp and Yp have the same interval support.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater".

conf.level Level of the confidence interval, default is 0.95, for the probability of success
(i.e., Pr(domination number≤ 1) for PE-PCD whose vertices are the 1D data
set Xp.

PEdom.num.binom.test1D 369

Value

A list with the elements

statistic Test statistic
p.value The p-value for the hypothesis test for the corresponding alternative.
conf.int Confidence interval for Pr(domination number≤ 1) at the given level conf.level

and depends on the type of alternative.
estimate A vector with two entries: first is is the estimate of the parameter, i.e., Pr(domination

number≤ 1) and second is the domination number
null.value Hypothesized value for the parameter, i.e., the null value for Pr(domination

number≤ 1)

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater"

method Description of the hypothesis test
data.name Name of the data set

Author(s)

Elvan Ceyhan

References

Ceyhan E (2020). “Domination Number of an Interval Catch Digraph Family and Its Use for Testing
Uniformity.” Statistics, 54(2), 310-339.

See Also

PEdom.num.binom.test and PEdom.num1D

Examples

Not run:
a<-0; b<-10; supp<-c(a,b)
c<-.4

r<-1/max(c,1-c)

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)
PEdom.num.binom.test1D(Xp,Yp,c,supp)
PEdom.num.binom.test1D(Xp,Yp,c,supp,alt="l")
PEdom.num.binom.test1D(Xp,Yp,c,supp,alt="g")
PEdom.num.binom.test1D(Xp,Yp,c,supp,end=TRUE)

End(Not run)

370 PEdom.num.binom.test1Dint

PEdom.num.binom.test1Dint

A test of uniformity for 1D data based on domination number of Pro-
portional Edge Proximity Catch Digraph (PE-PCD) - Binomial Ap-
proximation

Description

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of
uniformity of Xp points in the support interval (a, b)).

The support interval (a, b) is partitioned as (b-a)*(0:nint)/nint where nint=round(sqrt(nx),0)
and nx is number of Xp points, and the test is for testing the uniformity of Xp points in the interval
(a, b).

The null hypothesis is uniformity of Xp points on (a, b). The alternative is deviation of distribution
of Xp points from uniformity. The test is based on the (asymptotic) binomial distribution of the
domination number of PE-PCD for uniform 1D data in the partition intervals based on partition of
(a, b).

The function yields the test statistic, p-value for the corresponding alternative, the confidence inter-
val, estimate and null value for the parameter of interest (which is Pr(domination number≤ 1)),
and method and name of the data set used.

Under the null hypothesis of uniformity of Xp points in the support interval, probability of success
(i.e., Pr(domination number≤ 1)) equals to its expected value) and alternative could be two-
sided, or left-sided (i.e., data is accumulated around the end points of the partition intervals of the
support) or right-sided (i.e., data is accumulated around the centers of the partition intervals).

PE proximity region is constructed with the expansion parameter r ≥ 1 and centrality parameter c
which yields M -vertex regions. More precisely Mc = a + c(b − a) for the centrality parameter c
and for a given c ∈ (0, 1), the expansion parameter r is taken to be 1/max(c, 1 − c) which yields
non-degenerate asymptotic distribution of the domination number.

The test statistic is based on the binomial distribution, when success is defined as domination num-
ber being less than or equal to 1 in the one interval case (i.e., number of failures is equal to number
of times restricted domination number = 1 in the intervals). That is, the test statistic is based on the
domination number for Xp points inside the partition intervals for the PE-PCD. For this approach to
work, Xp must be large for each partition interval, but 5 or more per partition interval seems to work
in practice.

Probability of success is chosen in the following way for various parameter choices. asy.bin
is a logical argument for the use of asymptotic probability of success for the binomial distribution,
default is asy.bin=FALSE. When asy.bin=TRUE, asymptotic probability of success for the binomial
distribution is used. When asy.bin=FALSE, the finite sample probability of success for the binomial
distribution is used with number of trials equals to expected number of Xp points per partition
interval.

Usage

PEdom.num.binom.test1Dint(

PEdom.num.binom.test1Dint 371

Xp,
support.int,
c = 0.5,
asy.bin = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95

)

Arguments

Xp A set of 1D points which constitute the vertices of the PE-PCD.
support.int Support interval (a, b) with a < b. Uniformity of Xp points in this interval is

tested.
c A positive real number which serves as the centrality parameter in PE proximity

region; must be in (0, 1) (default c=.5).
asy.bin A logical argument for the use of asymptotic probability of success for the bi-

nomial distribution, default asy.bin=FALSE. When asy.bin=TRUE, asymptotic
probability of success for the binomial distribution is used. When asy.bin=FALSE,
the finite sample asymptotic probability of success for the binomial distribution
is used with number of trials equals to expected number of Xp points per partition
interval.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater".

conf.level Level of the confidence interval, default is 0.95, for the probability of success
(i.e., Pr(domination number≤ 1) for PE-PCD whose vertices are the 1D data
set Xp.

Value

A list with the elements

statistic Test statistic
p.value The p-value for the hypothesis test for the corresponding alternative

conf.int Confidence interval for Pr(domination number≤ 1) at the given level conf.level
and depends on the type of alternative.

estimate A vector with two entries: first is is the estimate of the parameter, i.e., Pr(domination
number≤ 1) and second is the domination number

null.value Hypothesized value for the parameter, i.e., the null value for Pr(domination
number≤ 1)

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater"

method Description of the hypothesis test
data.name Name of the data set

Author(s)

Elvan Ceyhan

372 PEdom.num.nondeg

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

PEdom.num.binom.test, PEdom.num1D and PEdom.num1Dnondeg

Examples

Not run:
a<-0; b<-10; supp<-c(a,b)
c<-.4

r<-1/max(c,1-c)

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-runif(nx,a,b)

PEdom.num.binom.test1Dint(Xp,supp,c,alt="t")
PEdom.num.binom.test1Dint(Xp,support.int = supp,c=c,alt="t")
PEdom.num.binom.test1Dint(Xp,supp,c,alt="l")
PEdom.num.binom.test1Dint(Xp,supp,c,alt="g")
PEdom.num.binom.test1Dint(Xp,supp,c,alt="t",asy.bin = TRUE)

End(Not run)

PEdom.num.nondeg The domination number of Proportional Edge Proximity Catch Di-
graph (PE-PCD) with non-degeneracy centers - multiple triangle case

Description

Returns the domination number, indices of a minimum dominating set of PE-PCD whose vertices
are the data points in Xp in the multiple triangle case and domination numbers for the Delaunay trian-
gles based on Yp points when PE-PCD is constructed with vertex regions based on non-degeneracy
centers.

PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with
expansion parameter r ≥ 1 and vertex regions in each triangle are based on the center M which
is one of the 3 centers that renders the asymptotic distribution of domination number to be non-
degenerate for a given value of r in (1, 1.5) and M is center of mass for r = 1.5.

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). Loops
are allowed for the domination number.

PEdom.num.nondeg 373

See (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)) more on the domination
number of PE-PCDs. Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on
Delaunay triangulation and the corresponding algorithm.

Usage

PEdom.num.nondeg(Xp, Yp, r)

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be in (1, 1.5] here.

Value

A list with three elements

dom.num Domination number of the PE-PCD whose vertices are Xp points. PE proximity
regions are constructed with respect to the Delaunay triangles based on the Yp
points with expansion parameter rin(1, 1.5].

#

mds A minimum dominating set of the PE-PCD whose vertices are Xp points.

ind.mds The data indices of the minimum dominating set of the PE-PCD whose vertices
are Xp points.

tri.dom.nums Domination numbers of the PE-PCD components for the Delaunay triangles.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

374 PEdom.num.norm.test

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

PEdom.num.tri, PEdom.num.tetra, dom.num.exact, and dom.num.greedy

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

r<-1.5 #try also r<-2

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

PEdom.num.nondeg(Xp,Yp,r)

End(Not run)

PEdom.num.norm.test A test of segregation/association based on domination number of Pro-
portional Edge Proximity Catch Digraph (PE-PCD) for 2D data - Nor-
mal Approximation

Description

An object of class "htest" (i.e., hypothesis test) function which performs a hypothesis test of
complete spatial randomness (CSR) or uniformity of Xp points in the convex hull of Yp points
against the alternatives of segregation (where Xp points cluster away from Yp points i.e., cluster
around the centers of the Delaunay triangles) and association (where Xp points cluster around Yp
points) based on the normal approximation to the binomial distribution of the domination number
of PE-PCD for uniform 2D data in the convex hull of Yp points

The function yields the test statistic, p-value for the corresponding alternative, the confidence
interval, estimate and null value for the parameter of interest (which is Pr(domination number≤
2)), and method and name of the data set used.

PEdom.num.norm.test 375

Under the null hypothesis of uniformity of Xp points in the convex hull of Yp points, probability of
success (i.e., Pr(domination number≤ 2)) equals to its expected value under the uniform distribu-
tion) and alternative could be two-sided, or right-sided (i.e., data is accumulated around the Yp
points, or association) or left-sided (i.e., data is accumulated around the centers of the triangles, or
segregation).

PE proximity region is constructed with the expansion parameter r ≥ 1 and M -vertex regions
where M is a center that yields non-degenerate asymptotic distribution of the domination number.

The test statistic is based on the normal approximation to the binomial distribution, when success
is defined as domination number being less than or equal to 2 in the one triangle case (i.e., number
of failures is equal to number of times restricted domination number = 3 in the triangles). That is,
the test statistic is based on the domination number for Xp points inside convex hull of Yp points for
the PE-PCD and default convex hull correction, ch.cor, is FALSE where M is the center that yields
nondegenerate asymptotic distribution for the domination number.

For this approximation to work, number of Yp points must be at least 5 (i.e., about 7 or more
Delaunay triangles) and number of Xp points must be at least 7 times more than the number of Yp
points.

See also (Ceyhan (2011)).

Usage

PEdom.num.norm.test(
Xp,
Yp,
r,
ch.cor = FALSE,
ndt = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95

)

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be in (1, 1.5].

ch.cor A logical argument for convex hull correction, default ch.cor=FALSE, recom-
mended when both Xp and Yp have the same rectangular support.

ndt Number of Delaunay triangles based on Yp points, default is NULL.

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater".

conf.level Level of the confidence interval, default is 0.95, for the domination number of
PE-PCD whose vertices are the 2D data set Xp.

376 PEdom.num.norm.test

Value

A list with the elements

statistic Test statistic

p.value The p-value for the hypothesis test for the corresponding alternative

conf.int Confidence interval for the domination number at the given level conf.level
and depends on the type of alternative.

estimate A vector with two entries: first is the domination number, and second is the
estimate of the parameter, i.e., Pr(Domination Number= 3)

null.value Hypothesized value for the parameter, i.e., the null value for expected domina-
tion number

alternative Type of the alternative hypothesis in the test, one of "two.sided", "less",
"greater"

method Description of the hypothesis test

data.name Name of the data set

Author(s)

Elvan Ceyhan

References

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

See Also

PEdom.num.binom.test

Examples

Not run:
nx<-100; ny<-5 #try also nx<-1000; ny<-10
r<-1.5 #try also r<-2 or r<-1.25

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

plotDelaunay.tri(Xp,Yp,xlab="",ylab="")
PEdom.num.norm.test(Xp,Yp,r) #try also PEdom.num.norm.test(Xp,Yp,r, alt="l")

PEdom.num.norm.test(Xp,Yp,1.25,ch=TRUE)

#or try
ndt<-num.delaunay.tri(Yp)

PEdom.num.tetra 377

PEdom.num.norm.test(Xp,Yp,r,ndt=ndt)
#values might differ due to the random of choice of the three centers M1,M2,M3
#for the non-degenerate asymptotic distribution of the domination number

End(Not run)

PEdom.num.tetra The domination number of Proportional Edge Proximity Catch Di-
graph (PE-PCD) - one tetrahedron case

Description

Returns the domination number of PE-PCD whose vertices are the data points in Xp.

PE proximity region is defined with respect to the tetrahedron th with expansion parameter r ≥ 1
and vertex regions are based on the center M which is circumcenter ("CC") or center of mass ("CM")
of th with default="CM".

See also (Ceyhan (2005, 2010)).

Usage

PEdom.num.tetra(Xp, th, r, M = "CM")

Arguments

Xp A set of 3D points which constitute the vertices of the digraph.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

Value

A list with two elements

dom.num Domination number of PE-PCD with vertex set = Xp and expansion parameter
r ≥ 1 and center M

mds A minimum dominating set of PE-PCD with vertex set = Xp and expansion pa-
rameter r ≥ 1 and center M

ind.mds Indices of the minimum dominating set mds

Author(s)

Elvan Ceyhan

378 PEdom.num.tri

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

PEdom.num.tri

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-10 #try also n<-20

Xp<-runif.tetra(n,tetra)$g

M<-"CM" #try also M<-"CC"
r<-1.25

PEdom.num.tetra(Xp,tetra,r,M)

P1<-c(.5,.5,.5)
PEdom.num.tetra(P1,tetra,r,M)

End(Not run)

PEdom.num.tri The domination number of Proportional Edge Proximity Catch Di-
graph (PE-PCD) - one triangle case

Description

Returns the domination number of PE-PCD whose vertices are the data points in Xp.

PE proximity region is defined with respect to the triangle tri with expansion parameter r ≥ 1
and vertex regions are constructed with center M = (m1,m2) in Cartesian coordinates or M =
(α, β, γ) in barycentric coordinates in the interior of the triangle tri or the circumcenter of tri.

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011, 2012)).

Usage

PEdom.num.tri(Xp, tri, r, M = c(1, 1, 1))

PEdom.num.tri 379

Arguments

Xp A set of 2D points which constitute the vertices of the digraph.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter of
tri which may be entered as "CC" as well; default is (1, 1, 1), i.e., the center of
mass.

Value

A list with two elements

dom.num Domination number of PE-PCD with vertex set = Xp and expansion parameter
r ≥ 1 and center M

mds A minimum dominating set of PE-PCD with vertex set = Xp and expansion pa-
rameter r ≥ 1 and center M

ind.mds Indices of the minimum dominating set mds

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

See Also

PEdom.num.nondeg, PEdom.num, and PEdom.num1D

380 PEdom.num1D

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2)
Tr<-rbind(A,B,C)
n<-10 #try also n<-20
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1,1,1)

r<-1.4

PEdom.num.tri(Xp,Tr,r,M)
IM<-inci.matPEtri(Xp,Tr,r,M)
dom.num.greedy #try also dom.num.exact(IM)

gr.gam<-dom.num.greedy(IM)
gr.gam
Xp[gr.gam$i,]

PEdom.num.tri(Xp,Tr,r,M=c(.4,.4))

End(Not run)

PEdom.num1D The domination number of Proportional Edge Proximity Catch Di-
graph (PE-PCD) for 1D data

Description

Returns the domination number, a minimum dominating set of PE-PCD whose vertices are the 1D
data set Xp, and the domination numbers for partition intervals based on Yp.

Yp determines the end points of the intervals (i.e., partition the real line via intervalization). It also
includes the domination numbers in the end intervals, with interval label 1 for the left end interval
and $|Yp|+1$ for the right end interval.

PE proximity region is constructed with expansion parameter r ≥ 1 and centrality parameter c ∈
(0, 1).

Usage

PEdom.num1D(Xp, Yp, r, c = 0.5)

Arguments

Xp A set of 1D points which constitute the vertices of the PE-PCD.

Yp A set of 1D points which constitute the end points of the intervals which partition
the real line.

PEdom.num1D 381

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside int (default
c=.5).

Value

A list with three elements

dom.num Domination number of PE-PCD with vertex set Xp and expansion parameter
r ≥ 1 and centrality parameter c ∈ (0, 1).

mds A minimum dominating set of the PE-PCD.

ind.mds The data indices of the minimum dominating set of the PE-PCD whose vertices
are Xp points.

int.dom.nums Domination numbers of the PE-PCD components for the partition intervals.

Author(s)

Elvan Ceyhan

See Also

PEdom.num.nondeg

Examples

Not run:
a<-0; b<-10
c<-.4
r<-2

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)

PEdom.num1D(Xp,Yp,r,c)

PEdom.num1D(Xp,Yp,r,c=.25)
PEdom.num1D(Xp,Yp,r=1.25,c)

End(Not run)

382 PEdom.num1Dnondeg

PEdom.num1Dnondeg The domination number of Proportional Edge Proximity Catch Di-
graph (PE-PCD) with non-degeneracy centers - multiple interval case

Description

Returns the domination number, a minimum dominating set of PE-PCD whose vertices are the
1D data set Xp, and the domination numbers for partition intervals based on Yp when PE-PCD is
constructed with vertex regions based on non-degeneracy centers.

Yp determines the end points of the intervals (i.e., partition the real line via intervalization).

PE proximity regions are defined with respect to the intervals based on Yp points with expansion
parameter r ≥ 1 and vertex regions in each interval are based on the centrality parameter c which
is one of the 2 values of c (i.e., c ∈ {(r − 1)/r, 1/r}) that renders the asymptotic distribution of
domination number to be non-degenerate for a given value of r in (1, 2) and c is center of mass for
r = 2. These values are called non-degeneracy centrality parameters and the corresponding centers
are called nondegeneracy centers.

Usage

PEdom.num1Dnondeg(Xp, Yp, r)

Arguments

Xp A set of 1D points which constitute the vertices of the PE-PCD.

Yp A set of 1D points which constitute the end points of the intervals which partition
the real line.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be in (1, 2] here.

Value

A list with three elements

dom.num Domination number of PE-PCD with vertex set Xp and expansion parameter
rin(1, 2] and centrality parameter c ∈ {(r − 1)/r, 1/r}.

mds A minimum dominating set of the PE-PCD.

ind.mds The data indices of the minimum dominating set of the PE-PCD whose vertices
are Xp points.

int.dom.nums Domination numbers of the PE-PCD components for the partition intervals.

Author(s)

Elvan Ceyhan

perpline 383

See Also

PEdom.num.nondeg

Examples

Not run:
a<-0; b<-10
r<-1.5

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)

PEdom.num1Dnondeg(Xp,Yp,r)
PEdom.num1Dnondeg(Xp,Yp,r=1.25)

End(Not run)

perpline The line passing through a point and perpendicular to the line segment
joining two points

Description

An object of class "Lines". Returns the equation, slope, intercept, and y-coordinates of the
line crossing the point p and perpendicular to the line passing through the points a and b with
x-coordinates are provided in vector x.

Usage

perpline(p, a, b, x)

Arguments

p A 2D point at which the perpendicular line to line segment joining a and b
crosses.

a, b 2D points that determine the line segment (the line will be perpendicular to this
line segment).

x A scalar or a vector of scalars representing the x-coordinates of the line per-
pendicular to line joining a and b and crossing p.

384 perpline

Value

A list with the elements

desc Description of the line passing through point p and perpendicular to line joining
a and b

mtitle The "main" title for the plot of the line passing through point p and perpendic-
ular to line joining a and b

points The input points a and b (stacked row-wise, i.e., row 1 is point a and row 2 is
point b). Line passing through point p is perpendicular to line joining a and b

x The input vector, can be a scalar or a vector of scalars, which constitute the
x-coordinates of the point(s) of interest on the line passing through point p and
perpendicular to line joining a and b

y The output vector which constitutes the y-coordinates of the point(s) of interest
on the line passing through point p and perpendicular to line joining a and b. If
x is a scalar, then y will be a scalar and if x is a vector of scalars, then y will be
a vector of scalars.

slope Slope of the line passing through point p and perpendicular to line joining a and
b

intercept Intercept of the line passing through point p and perpendicular to line joining a
and b

equation Equation of the line passing through point p and perpendicular to line joining a
and b

Author(s)

Elvan Ceyhan

See Also

slope, Line, and paraline

Examples

Not run:
A<-c(1.1,1.2); B<-c(2.3,3.4); p<-c(.51,2.5)

perpline(p,A,B,.45)

pts<-rbind(A,B,p)
xr<-range(pts[,1])
xf<-(xr[2]-xr[1])*.25
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20, or 100

plnAB<-perpline(p,A,B,x)
plnAB
summary(plnAB)
plot(plnAB,asp=1)

perpline2plane 385

y<-plnAB$y
Xlim<-range(x,pts[,1])
if (!is.na(y[1])) {Ylim<-range(y,pts[,2])} else {Ylim<-range(pts[,2])}
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
pf<-c(xd,-yd)*.025

plot(A,asp=1,pch=".",xlab="",ylab="",
main="Line Crossing p and Perpendicular to AB",
xlim=Xlim+xd*c(-.5,.5),ylim=Ylim+yd*c(-.05,.05))
points(pts)
txt.str<-c("A","B","p")
text(pts+rbind(pf,pf,pf),txt.str)

segments(A[1],A[2],B[1],B[2],lty=2)
if (!is.na(y[1])) {lines(x,y,type="l",lty=1,
xlim=Xlim,ylim=Ylim)} else {abline(v=p[1])}
tx<-p[1]+abs(xf-p[1])/2;
if (!is.na(y[1])) {ty<-perpline(p,A,B,tx)$y} else {ty=p[2]}
text(tx,ty,"line perpendicular to AB\n and crossing p")

End(Not run)

perpline2plane The line crossing the 3D point p and perpendicular to the plane
spanned by 3D points a, b, and c

Description

An object of class "Lines3D". Returns the equation, x-, y-, and z-coordinates of the line crossing
3D point p and perpendicular to the plane spanned by 3D points a, b, and c (i.e., the line is in the
direction of normal vector of this plane) with the parameter t being provided in vector t.

Usage

perpline2plane(p, a, b, c, t)

Arguments

p A 3D point through which the straight line passes.

a, b, c 3D points which determine the plane to which the line passing through point
p would be perpendicular (i.e., the normal vector of this plane determines the
direction of the straight line passing through p).

t A scalar or a vector of scalars representing the parameter of the coordinates of
the line (for the form: x = p0 + At, y = y0 + Bt, and z = z0 + Ct where
p = (p0, y0, z0) and normal vector= (A,B,C)).

386 perpline2plane

Value

A list with the elements

desc A description of the line

mtitle The "main" title for the plot of the line

points The input points that determine the line and plane, line crosses point p and plane
is determined by 3D points a, b, and c.

pnames The names of the input points that determine the line and plane; line would be
perpendicular to the plane.

vecs The point p and normal vector.

vec.names The names of the point p and the second entry is "normal vector".

x, y, z The x-, y-, and z-coordinates of the point(s) of interest on the line perpendicular
to the plane determined by points a, b, and c.

tsq The scalar or the vector of the parameter in defining each coordinate of the line
for the form: x = p0+At, y = y0+Bt, and z = z0+Ct where p = (p0, y0, z0)
and normal vector= (A,B,C).

equation Equation of the line passing through point p and perpendicular to the plane de-
termined by points a, b, and c (i.e., line is in the direction of the normal vector
N of the plane). The line equation is in the form: x = p0 + At, y = y0 + Bt,
and z = z0 + Ct where p = (p0, y0, z0) and normal vector= (A,B,C).

Author(s)

Elvan Ceyhan

See Also

Line3D, paraline3D, and perpline

Examples

Not run:
P<-c(1,1,1); Q<-c(1,10,4); R<-c(1,1,3); S<-c(3,9,12)

cf<-as.numeric(Plane(Q,R,S,1,1)$coeff)
a<-cf[1]; b<-cf[2]; c<- -1;

vecs<-rbind(Q,c(a,b,c))
pts<-rbind(P,Q,R,S)
perpline2plane(P,Q,R,S,.1)

tr<-range(pts,vecs);
tf<-(tr[2]-tr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf*10-tf,tf*10+tf,l=5) #try also l=10, 20, or 100

pln2pl<-perpline2plane(P,Q,R,S,tsq)
pln2pl

perpline2plane 387

summary(pln2pl)
plot(pln2pl,theta = 225, phi = 30, expand = 0.7,
facets = FALSE, scale = TRUE)

xc<-pln2pl$x
yc<-pln2pl$y
zc<-pln2pl$z

zr<-range(zc)
zf<-(zr[2]-zr[1])*.2
Rv<- -c(a,b,c)*zf*5

Dr<-(Q+R+S)/3

pts2<-rbind(Q,R,S)
xr<-range(pts2[,1],xc); yr<-range(pts2[,2],yc)
xf<-(xr[2]-xr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*.1
#how far to go at the lower and upper ends in the y-coordinate
xs<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20, or 100
ys<-seq(yr[1]-yf,yr[2]+yf,l=5) #try also l=10, 20, or 100

plQRS<-Plane(Q,R,S,xs,ys)
z.grid<-plQRS$z

Xlim<-range(xc,xs,pts[,1])
Ylim<-range(yc,ys,pts[,2])
Zlim<-range(zc,z.grid,pts[,3])

xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

plot3D::persp3D(z = z.grid, x = xs, y = ys, theta =225, phi = 30,
main="Line Crossing P and \n Perpendicular to the Plane Defined by Q, R, S",
col="lightblue", ticktype = "detailed",

xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.05,.05))
#plane spanned by points Q, R, S

plot3D::lines3D(xc, yc, zc, bty = "g",pch = 20, cex = 2,col="red",
ticktype = "detailed",add=TRUE)
plot3D::arrows3D(Dr[1],Dr[2],Dr[3],Dr[1]+Rv[1],Dr[2]+Rv[2],
Dr[3]+Rv[3], add=TRUE)
plot3D::points3D(pts[,1],pts[,2],pts[,3],add=TRUE)
plot3D::text3D(pts[,1],pts[,2],pts[,3],labels=c("P","Q","R","S"),add=TRUE)
plot3D::arrows3D(P[1],P[2],P[3]-zf,P[1],P[2],P[3],lty=2, add=TRUE)
plot3D::text3D(P[1],P[2],P[3]-zf,labels="initial point",add=TRUE)
plot3D::text3D(P[1],P[2],P[3]+zf/2,labels="P",add=TRUE)
plot3D::arrows3D(Dr[1],Dr[2],Dr[3],Dr[1]+Rv[1]/2,Dr[2]+Rv[2]/2,
Dr[3]+Rv[3]/2,lty=2, add=TRUE)
plot3D::text3D(Dr[1]+Rv[1]/2,Dr[2]+Rv[2]/2,Dr[3]+Rv[3]/2,
labels="normal vector",add=TRUE)

388 Plane

End(Not run)

Plane The plane passing through three distinct 3D points a, b, and c

Description

An object of class "Planes". Returns the equation and z-coordinates of the plane passing through
three distinct 3D points a, b, and c with x- and y-coordinates are provided in vectors x and y,
respectively.

Usage

Plane(a, b, c, x, y)

Arguments

a, b, c 3D points that determine the plane (i.e., through which the plane is passing).

x, y Scalars or vectors of scalars representing the x- and y-coordinates of the plane.

Value

A list with the elements

desc A description of the plane

points The input points a, b, and c through which the plane is passing (stacked row-
wise, i.e., row 1 is point a, row 2 is point b and row 3 is point c).

x, y The input vectors which constitutes the x- and y-coordinates of the point(s) of
interest on the plane. x and y can be scalars or vectors of scalars.

z The output vector which constitutes the z-coordinates of the point(s) of interest
on the plane. If x and y are scalars, z will be a scalar and if x and y are vectors
of scalars, then z needs to be a matrix of scalars, containing the z-coordinate
for each pair of x and y values.

coeff Coefficients of the plane (in the z = Ax+By + C form).

equation Equation of the plane in long form

equation2 Equation of the plane in short form, to be inserted on the plot

Author(s)

Elvan Ceyhan

See Also

paraplane

plot.Extrema 389

Examples

Not run:
P1<-c(1,10,3); P2<-c(1,1,3); P3<-c(3,9,12) #also try P2=c(2,2,3)

pts<-rbind(P1,P2,P3)
Plane(P1,P2,P3,.1,.2)

xr<-range(pts[,1]); yr<-range(pts[,2])
xf<-(xr[2]-xr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*.1
#how far to go at the lower and upper ends in the y-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20, or 100
y<-seq(yr[1]-yf,yr[2]+yf,l=5) #try also l=10, 20, or 100

plP123<-Plane(P1,P2,P3,x,y)
plP123
summary(plP123)
plot(plP123,theta = 225, phi = 30, expand = 0.7, facets = FALSE, scale = TRUE)

z.grid<-plP123$z

persp(x,y,z.grid, xlab="x",ylab="y",zlab="z",
theta = -30, phi = 30, expand = 0.5, col = "lightblue",

ltheta = 120, shade = 0.05, ticktype = "detailed")

zr<-max(z.grid)-min(z.grid)
Pts<-rbind(P1,P2,P3)+rbind(c(0,0,zr*.1),c(0,0,zr*.1),c(0,0,zr*.1))
Mn.pts<-apply(Pts,2,mean)

plot3D::persp3D(z = z.grid, x = x, y = y,theta = 225, phi = 30, expand = 0.3,
main = "Plane Crossing Points P1, P2, and P3", facets = FALSE, scale = TRUE)
#plane spanned by points P1, P2, P3
#add the defining points
plot3D::points3D(Pts[,1],Pts[,2],Pts[,3], add=TRUE)
plot3D::text3D(Pts[,1],Pts[,2],Pts[,3], c("P1","P2","P3"),add=TRUE)
plot3D::text3D(Mn.pts[1],Mn.pts[2],Mn.pts[3],plP123$equation,add=TRUE)
#plot3D::polygon3D(Pts[,1],Pts[,2],Pts[,3], add=TRUE)

End(Not run)

plot.Extrema Plot an Extrema object

Description

Plots the data points and extrema among these points together with the reference object (e.g., bound-
ary of the support region)

390 plot.Lines

Usage

S3 method for class 'Extrema'
plot(x, asp = NA, xlab = "", ylab = "", zlab = "", ...)

Arguments

x Object of class Extrema.

asp A numeric value, giving the aspect ratio for y-axis to x-axis y/x for the 2D
case, it is redundant in the 3D case (default is NA), see the official help for asp
by typing "? asp".

xlab, ylab, zlab Titles for the x and y axes in the 2D case, and x, y, and z axes in the 3D case,
respectively (default is "" for all).

... Additional parameters for plot.

Value

None

See Also

print.Extrema, summary.Extrema, and print.summary.Extrema

Examples

Not run:
n<-10
Xp<-runif.std.tri(n)$gen.points
Ext<-cl2edges.std.tri(Xp)
Ext
plot(Ext,asp=1)

End(Not run)

plot.Lines Plot a Lines object

Description

Plots the line together with the defining points.

Usage

S3 method for class 'Lines'
plot(x, asp = NA, xlab = "x", ylab = "y", ...)

plot.Lines3D 391

Arguments

x Object of class Lines.

asp A numeric value, giving the aspect ratio for y-axis to x-axis y/x (default is NA),
see the official help for asp by typing "? asp".

xlab, ylab Titles for the x and y axes, respectively (default is xlab="x" and ylab="y").

... Additional parameters for plot.

Value

None

See Also

print.Lines, summary.Lines, and print.summary.Lines

Examples

Not run:
A<-c(-1.22,-2.33); B<-c(2.55,3.75)
xr<-range(A,B);
xf<-(xr[2]-xr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=3) #try also l=10, 20 or 100

lnAB<-Line(A,B,x)
lnAB
plot(lnAB)

End(Not run)

plot.Lines3D Plot a Lines3D object

Description

Plots the line together with the defining vectors (i.e., the initial and direction vectors).

Usage

S3 method for class 'Lines3D'
plot(x, xlab = "x", ylab = "y", zlab = "z", phi = 40, theta = 40, ...)

392 plot.NumArcs

Arguments

x Object of class Lines3D.

xlab, ylab, zlab Titles for the x, y, and z axes, respectively (default is xlab="x", ylab="y" and
zlab="z").

theta, phi The angles defining the viewing direction. theta gives the azimuthal direction
and phi the colatitude. See persp3D for more details.

... Additional parameters for plot.

Value

None

See Also

print.Lines3D, summary.Lines3D, and print.summary.Lines3D

Examples

Not run:
P<-c(1,10,3); Q<-c(1,1,3);
vecs<-rbind(P,Q)
Line3D(P,Q,.1)
Line3D(P,Q,.1,dir.vec=FALSE)

tr<-range(vecs);
tf<-(tr[2]-tr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf*10-tf,tf*10+tf,l=3) #try also l=10, 20 or 100

lnPQ3D<-Line3D(P,Q,tsq)
lnPQ3D
plot(lnPQ3D)

End(Not run)

plot.NumArcs Plot a NumArcs object

Description

Plots the scatter plot of the data points (i.e. vertices of the PCDs) and the Delaunay tessellation of
the nontarget points marked with number of arcs in the centroid of the Delaunay cells.

Usage

S3 method for class 'NumArcs'
plot(x, Jit = 0.1, ...)

plot.Patterns 393

Arguments

x Object of class NumArcs.

Jit A positive real number that determines the amount of jitter along the y-axis,
default is 0.1, for the 1D case, the vertices of the PCD are jittered according
to U(−Jit, Jit) distribution along the y-axis where Jit equals to the range of
vertices and the interval end points; it is redundant in the 2D case.

... Additional parameters for plot.

Value

None

See Also

print.NumArcs, summary.NumArcs, and print.summary.NumArcs

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g)
Arcs<-arcsAStri(Xp,Tr,M)
Arcs
plot(Arcs)

End(Not run)

plot.Patterns Plot a Patterns object

Description

Plots the points generated from the pattern (color coded for each class) together with the study
window

Usage

S3 method for class 'Patterns'
plot(x, asp = NA, xlab = "x", ylab = "y", ...)

394 plot.PCDs

Arguments

x Object of class Patterns.

asp A numeric value, giving the aspect ratio for y-axis to x-axis y/x (default is NA),
see the official help for asp by typing "? asp".

xlab, ylab Titles for the x and y axes, respectively (default is xlab="x" and ylab="y").

... Additional parameters for plot.

Value

None

See Also

print.Patterns, summary.Patterns, and print.summary.Patterns

Examples

Not run:
nx<-10; #try also 100 and 1000
ny<-5; #try also 1
e<-.15;
Y<-cbind(runif(ny),runif(ny))
#with default bounding box (i.e., unit square)

Xdt<-rseg.circular(nx,Y,e)
Xdt
plot(Xdt,asp=1)

End(Not run)

plot.PCDs Plot a PCDs object

Description

Plots the vertices and the arcs of the PCD together with the vertices and boundaries of the partition
cells (i.e., intervals in the 1D case and triangles in the 2D case)

Usage

S3 method for class 'PCDs'
plot(x, Jit = 0.1, ...)

plot.Planes 395

Arguments

x Object of class PCDs.

Jit A positive real number that determines the amount of jitter along the y-axis,
default is 0.1, for the 1D case, the vertices of the PCD are jittered according
to U(−Jit, Jit) distribution along the y-axis where Jit equals to the range of
vertices and the interval end points; it is redundant in the 2D case.

... Additional parameters for plot.

Value

None

See Also

print.PCDs, summary.PCDs, and print.summary.PCDs

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g)
Arcs<-arcsAStri(Xp,Tr,M)
Arcs
plot(Arcs)

End(Not run)

plot.Planes Plot a Planes object

Description

Plots the plane together with the defining 3D points.

Usage

S3 method for class 'Planes'
plot(
x,
x.grid.size = 10,
y.grid.size = 10,
xlab = "x",
ylab = "y",

396 plot.Planes

zlab = "z",
phi = 40,
theta = 40,
...

)

Arguments

x Object of class Planes.

x.grid.size, y.grid.size
the size of the grids for the x and y axes, default is 10 for both

xlab, ylab, zlab Titles for the x, y, and z axes, respectively (default is xlab="x", ylab="y", and
zlab="z").

theta, phi The angles defining the viewing direction, default is 40 for both. theta gives
the azimuthal direction and phi the colatitude. see persp.

... Additional parameters for plot.

Value

None

See Also

print.Planes, summary.Planes, and print.summary.Planes

Examples

Not run:
P<-c(1,10,3); Q<-c(1,1,3); C<-c(3,9,12)
pts<-rbind(P,Q,C)

xr<-range(pts[,1]); yr<-range(pts[,2])
xf<-(xr[2]-xr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*.1
#how far to go at the lower and upper ends in the y-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20 or 100
y<-seq(yr[1]-yf,yr[2]+yf,l=5) #try also l=10, 20 or 100

plPQC<-Plane(P,Q,C,x,y)
plPQC
plot(plPQC,theta = 225, phi = 30, expand = 0.7,
facets = FALSE, scale = TRUE)

End(Not run)

plot.TriLines 397

plot.TriLines Plot a TriLines object

Description

Plots the line together with the defining triangle.

Usage

S3 method for class 'TriLines'
plot(x, xlab = "x", ylab = "y", ...)

Arguments

x Object of class TriLines.

xlab, ylab Titles for the x and y axes, respectively (default is xlab="x" and ylab="y").

... Additional parameters for plot.

Value

None

See Also

print.TriLines, summary.TriLines, and print.summary.TriLines

Examples

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
xfence<-abs(A[1]-B[1])*.25
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,l=3)

lnACM<-lineA2CMinTe(x)
lnACM
plot(lnACM)

398 plot.Uniform

plot.Uniform Plot a Uniform object

Description

Plots the points generated from the uniform distribution together with the support region

Usage

S3 method for class 'Uniform'
plot(x, asp = NA, xlab = "x", ylab = "y", zlab = "z", ...)

Arguments

x Object of class Uniform.

asp A numeric value, giving the aspect ratio for y-axis to x-axis y/x for the 2D
case, it is redundant in the 3D case (default is NA), see the official help for asp
by typing "? asp".

xlab, ylab, zlab Titles for the x and y axes in the 2D case, and x, y, and z axes in the 3D case,
respectively (default is xlab="x", ylab="y", and zlab="z").

... Additional parameters for plot.

Value

None

See Also

print.Uniform, summary.Uniform, and print.summary.Uniform

Examples

Not run:
n<-10 #try also 20, 100, and 1000
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C)

Xdt<-runif.tri(n,Tr)
Xdt
plot(Xdt,asp=1)

End(Not run)

plotASarcs 399

plotASarcs The plot of the arcs of Arc Slice Proximity Catch Digraph (AS-PCD)
for a 2D data set - multiple triangle case

Description

Plots the arcs of AS-PCD whose vertices are the data points in Xp and Delaunay triangles based on
Yp points.

AS proximity regions are constructed with respect to the Delaunay triangles based on Yp points,
i.e., AS proximity regions are defined only for Xp points inside the convex hull of Yp points. That
is, arcs may exist for Xp points only inside the convex hull of Yp points.

Vertex regions are based on the center M="CC" for circumcenter of each Delaunay triangle or M =
(α, β, γ) in barycentric coordinates in the interior of each Delaunay triangle; default is M="CC" i.e.,
circumcenter of each triangle.

See (Ceyhan (2005, 2010)) for more on AS-PCDs. Also see (Okabe et al. (2000); Ceyhan (2010);
Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

Usage

plotASarcs(
Xp,
Yp,
M = "CC",
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
...

)

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangulation.
The Delaunay triangles partition the convex hull of Yp points.

M The center of the triangle. "CC" stands for circumcenter of each Delaunay tri-
angle or 3D point in barycentric coordinates which serves as a center in the
interior of each Delaunay triangle; default is M="CC" i.e., the circumcenter of
each triangle.

asp A numeric value, giving the aspect ratio for y axis to x-axis y/x (default is NA),
see the official help page for asp by typing "? asp".

main An overall title for the plot (default=NULL).

400 plotASarcs

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

... Additional plot parameters.

Value

A plot of the arcs of the AS-PCD for a 2D data set Xp where AS proximity regions are defined with
respect to the Delaunay triangles based on Yp points; also plots the Delaunay triangles based on Yp
points.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

plotASarcs.tri, plotPEarcs.tri, plotPEarcs, plotCSarcs.tri, and plotCSarcs

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)

plotASarcs.tri 401

#plotASarcs(Xp,Yp,M,xlab="",ylab="")
plotASarcs(Xp,Yp,M,asp=1,xlab="",ylab="")

plotASarcs(Xp,Yp[1:3,],M,xlab="",ylab="")

End(Not run)

plotASarcs.tri The plot of the arcs of Arc Slice Proximity Catch Digraph (AS-PCD)
for a 2D data set - one triangle case

Description

Plots the arcs of AS-PCD whose vertices are the data points, Xp and the triangle tri. AS proximity
regions are constructed with respect to the triangle tri, i.e., only for Xp points inside the triangle
tri.

Vertex regions are based on the center M="CC" for circumcenter of tri; or M = (m1,m2) in
Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of the triangle
tri; default is M="CC" the circumcenter of tri. When the center is the circumcenter, CC, the vertex
regions are constructed based on the orthogonal projections to the edges, while with any interior
center M, the vertex regions are constructed using the extensions of the lines combining vertices
with M.

See also (Ceyhan (2005, 2010)).

Usage

plotASarcs.tri(
Xp,
tri,
M = "CC",
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
vert.reg = FALSE,
...

)

Arguments

Xp A set of 2D points which constitute the vertices of the AS-PCD.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

402 plotASarcs.tri

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle Tb; default is M="CC" i.e.,
the circumcenter of tri.

asp A numeric value, giving the aspect ratio for y axis to x-axis y/x (default is NA),
see the official help page for asp by typing "? asp".

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

vert.reg A logical argument to add vertex regions to the plot, default is vert.reg=FALSE.

... Additional plot parameters.

Value

A plot of the arcs of the AS-PCD for a 2D data set Xp where AS proximity regions are defined with
respect to the triangle tri; also plots the triangle tri

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

plotASarcs, plotPEarcs.tri, plotPEarcs, plotCSarcs.tri, and plotCSarcs

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp<-runif.tri(n,Tr)$g #try also Xp<-cbind(runif(n,1,2),runif(n,0,2))

plotASregs 403

M<-as.numeric(runif.tri(1,Tr)$g) #try also #M<-c(1.6,1.2)

plotASarcs.tri(Xp,Tr,M,main="Arcs of AS-PCD",xlab="",ylab="")

plotASarcs.tri(Xp,Tr,M,main="Arcs of AS-PCD",xlab="",ylab="",vert.reg = TRUE)

or try the default center
#plotASarcs.tri(Xp,Tr,asp=1,main="arcs of AS-PCD",xlab="",ylab="",vert.reg = TRUE);
#M = (arcsAStri(Xp,Tr)$param)$c #the part "M = as.numeric(arcsAStri(Xp,Tr)$param)" is optional,
#for the below annotation of the plot

#can add vertex labels and text to the figure (with vertex regions)
#but first we need to determine whether the center used for vertex regions is CC or not
#see the description for more detail.
CC<-circumcenter.tri(Tr)

if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
}

#now we add the vertex names and annotation
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]+c(-.02,.02,.02,.01,.05,-0.03,-.01)
yc<-txt[,2]+c(.02,.02,.02,.07,.02,.05,-.06)
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

plotASregs The plot of the Arc Slice (AS) Proximity Regions for a 2D data set -
multiple triangle case

Description

Plots the Xp points in and outside of the convex hull of Yp points and also plots the AS proximity
regions for Xp points and Delaunay triangles based on Yp points.

AS proximity regions are constructed with respect to the Delaunay triangles based on Yp points
(these triangles partition the convex hull of Yp points), i.e., AS proximity regions are only defined
for Xp points inside the convex hull of Yp points.

404 plotASregs

Vertex regions are based on the center M="CC" for circumcenter of each Delaunay triangle or M =
(α, β, γ) in barycentric coordinates in the interior of each Delaunay triangle; default is M="CC" i.e.,
circumcenter of each triangle.

See (Ceyhan (2005, 2010)) for more on AS-PCDs. Also see (Okabe et al. (2000); Ceyhan (2010);
Sinclair (2016)) for more on Delaunay triangulation and the corresponding algorithm.

Usage

plotASregs(
Xp,
Yp,
M = "CC",
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
...

)

Arguments

Xp A set of 2D points for which AS proximity regions are constructed.

Yp A set of 2D points which constitute the vertices of the Delaunay triangulation.
The Delaunay triangles partition the convex hull of Yp points.

M The center of the triangle. "CC" stands for circumcenter of each Delaunay tri-
angle or 3D point in barycentric coordinates which serves as a center in the
interior of each Delaunay triangle; default is M="CC" i.e., the circumcenter of
each triangle.

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

... Additional plot parameters.

Value

Plot of the Xp points, Delaunay triangles based on Yp and also the AS proximity regions for Xp
points inside the convex hull of Yp points

Author(s)

Elvan Ceyhan

plotASregs.tri 405

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

plotASregs.tri, plotPEregs.tri, plotPEregs, plotCSregs.tri, and plotCSregs

Examples

Not run:
nx<-10 ; ny<-5

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3) #or M="CC"

plotASregs(Xp,Yp,M,xlab="",ylab="")

plotASregs(Xp,Yp[1:3,],M,xlab="",ylab="")

Xp<-c(.5,.5)
plotASregs(Xp,Yp,M,xlab="",ylab="")

End(Not run)

plotASregs.tri The plot of the Arc Slice (AS) Proximity Regions for a 2D data set -
one triangle case

406 plotASregs.tri

Description

Plots the points in and outside of the triangle tri and also the AS proximity regions for points in
data set Xp.

AS proximity regions are defined with respect to the triangle tri, so AS proximity regions are
defined only for points inside the triangle tri and vertex regions are based on the center M="CC" for
circumcenter of tri; or M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in barycentric
coordinates in the interior of the triangle tri; default is M="CC" the circumcenter of tri. When
vertex regions are constructed with circumcenter, CC, the vertex regions are constructed based on
the orthogonal projections to the edges, while with any interior center M, the vertex regions are
constructed using the extensions of the lines combining vertices with M.

See also (Ceyhan (2005, 2010)).

Usage

plotASregs.tri(
Xp,
tri,
M = "CC",
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
vert.reg = FALSE,
...

)

Arguments

Xp A set of 2D points for which AS proximity regions are constructed.

tri Three 2D points, stacked row-wise, each row representing a vertex of the trian-
gle.

M The center of the triangle. "CC" stands for circumcenter of the triangle tri or
a 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle Tb; default is M="CC" i.e.,
the circumcenter of tri.

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

vert.reg A logical argument to add vertex regions to the plot, default is vert.reg=FALSE.

... Additional plot parameters.

Value

Plot of the AS proximity regions for points inside the triangle tri (and only the points outside tri)

plotASregs.tri 407

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

plotASregs, plotPEregs.tri, plotPEregs, plotCSregs.tri, and plotCSregs

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp0<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) #try also #M<-c(1.6,1.2);

plotASregs.tri(Xp0,Tr,M,main="Proximity Regions for AS-PCD", xlab="",ylab="")
Xp = Xp0[1,]
plotASregs.tri(Xp,Tr,M,main="Proximity Regions for AS-PCD", xlab="",ylab="")

#can plot the arcs of the AS-PCD
#plotASarcs.tri(Xp,Tr,M,main="Arcs of AS-PCD",xlab="",ylab="")

plotASregs.tri(Xp,Tr,M,main="Proximity Regions for AS-PCD", xlab="",ylab="",vert.reg=TRUE)

or try the default center
#plotASregs.tri(Xp,Tr,main="Proximity Regions for AS-PCD", xlab="",ylab="",vert.reg=TRUE);
M = (arcsAStri(Xp,Tr)$param)$c #the part "M = as.numeric(arcsAStri(Xp,Tr)$param)" is optional,
#for the below annotation of the plot

#can add vertex labels and text to the figure (with vertex regions)
#but first we need to determine whether the center used for vertex regions is CC or not
#see the description for more detail.
CC<-circumcenter.tri(Tr)
#Arcs<-arcsAStri(Xp,Tr,M)
#M = as.numeric(Arcs$parameters)

408 plotCSarcs

if (isTRUE(all.equal(M,CC)) || identical(M,"CC"))
{cent<-CC
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
cent.name<-"CC"
} else
{cent<-M
cent.name<-"M"
Ds<-prj.cent2edges(Tr,M)
}

#now we add the vertex names and annotation
txt<-rbind(Tr,cent,Ds)
xc<-txt[,1]+c(-.02,.03,.03,.03,.05,-0.03,-.01)
yc<-txt[,2]+c(.02,.02,.02,.07,.02,.05,-.06)
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

plotCSarcs The plot of the arcs of Central Similarity Proximity Catch Digraph
(CS-PCD) for a 2D data set - multiple triangle case

Description

Plots the arcs of Central Similarity Proximity Catch Digraph (CS-PCD) whose vertices are the data
points in Xp in the multiple triangle case and the Delaunay triangles based on Yp points.

CS proximity regions are defined with respect to the Delaunay triangles based on Yp points with
expansion parameter t > 0 and edge regions in each triangle are based on the center M = (α, β, γ)
in barycentric coordinates in the interior of each Delaunay triangle (default for M = (1, 1, 1) which
is the center of mass of the triangle). Each Delaunay triangle is first converted to an (nonscaled)
basic triangle so that M will be the same type of center for each Delaunay triangle (this conversion
is not necessary when M is CM).

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). Loops
are not allowed so arcs are only possible for points inside the convex hull of Yp points.

See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) more on the CS-PCDs. Also see
(Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the
corresponding algorithm.

Usage

plotCSarcs(
Xp,
Yp,
t,

plotCSarcs 409

M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
...

)

Arguments

Xp A set of 2D points which constitute the vertices of the CS-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 3D point in barycentric coordinates which serves as a center in the interior of
each Delaunay triangle, default for M = (1, 1, 1) which is the center of mass of
each triangle.

asp A numeric value, giving the aspect ratio y/x (default is NA), see the official help
page for asp by typing "? asp"

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both)

... Additional plot parameters.

Value

A plot of the arcs of the CS-PCD whose vertices are the points in data set Xp and the Delaunay
triangles based on Yp points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

410 plotCSarcs.int

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

plotCSarcs.tri, plotASarcs, and plotPEarcs

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)
t<-1.5 #try also t<-2

plotCSarcs(Xp,Yp,t,M,xlab="",ylab="")

End(Not run)

plotCSarcs.int The plot of the arcs of Central Similarity Proximity Catch Digraphs
(CS-PCDs) for 1D data (vertices jittered along y-coordinate) - one
interval case

Description

Plots the arcs of CS-PCD whose vertices are the 1D points, Xp. CS proximity regions are constructed
with expansion parameter t > 0 and centrality parameter c ∈ (0, 1) and the intervals are based
on the interval int= (a, b) That is, data set Xp constitutes the vertices of the digraph and int
determines the end points of the interval.

For better visualization, a uniform jitter from U(−Jit, Jit) (default for Jit = .1) is added to the
y-direction where Jit equals to the range of {Xp, int} multiplied by Jit with default for Jit = .1).
center is a logical argument, if TRUE, plot includes the center of the interval int as a vertical line
in the plot, else center of the interval is not plotted.

plotCSarcs.int 411

Usage

plotCSarcs.int(
Xp,
int,
t,
c = 0.5,
Jit = 0.1,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
center = FALSE,
...

)

Arguments

Xp A vector of 1D points constituting the vertices of the CS-PCD.

int A vector of two 1D points constituting the end points of the interval.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center of the interval with
the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Jit A positive real number that determines the amount of jitter along the y-axis,
default=0.1 and Xp points are jittered according to U(−Jit, Jit) distribution
along the y-axis where Jit equals to the range of range of {Xp, int} multiplied
by Jit).

main An overall title for the plot (default=NULL).

xlab, ylab Titles of the x and y axes in the plot (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

center A logical argument, if TRUE, plot includes the center of the interval int as a
vertical line in the plot, else center of the interval is not plotted.

... Additional plot parameters.

Value

A plot of the arcs of CS-PCD whose vertices are the 1D data set Xp in which vertices are jittered
along y-axis for better visualization.

Author(s)

Elvan Ceyhan

412 plotCSarcs.tri

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

plotCSarcs1D and plotPEarcs.int

Examples

tau<-2
c<-.4
a<-0; b<-10; int<-c(a,b)

#n is number of X points
n<-10; #try also n<-20;

set.seed(1)
xf<-(int[2]-int[1])*.1

Xp<-runif(n,a-xf,b+xf)

Xlim=range(Xp,int)
Ylim=3*c(-1,1)

jit<-.1
plotCSarcs.int(Xp,int,t=tau,c,jit,xlab="",ylab="",xlim=Xlim,ylim=Ylim)

set.seed(1)
plotCSarcs.int(Xp,int,t=1.5,c=.3,jit,xlab="",ylab="",center=TRUE)
set.seed(1)
plotCSarcs.int(Xp,int,t=2,c=.4,jit,xlab="",ylab="",center=TRUE)

plotCSarcs.tri The plot of the arcs of Central Similarity Proximity Catch Digraph
(CS-PCD) for a 2D data set - one triangle case

Description

Plots the arcs of CS-PCD whose vertices are the data points, Xp and the triangle tri. CS proximity
regions are constructed with respect to the triangle tri with expansion parameter t > 0, i.e., arcs
may exist only for Xp points inside the triangle tri.

Edge regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in
barycentric coordinates in the interior of the triangle tri; default is M = (1, 1, 1) i.e., the center of
mass of tri.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

plotCSarcs.tri 413

Usage

plotCSarcs.tri(
Xp,
tri,
t,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
edge.reg = FALSE,
...

)

Arguments

Xp A set of 2D points which constitute the vertices of the CS-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri; default is M =
(1, 1, 1) i.e., the center of mass of tri.

asp A numeric value, giving the aspect ratio y/x (default is NA), see the official help
page for asp by typing "? asp".

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

edge.reg A logical argument to add edge regions to the plot, default is edge.reg=FALSE.

... Additional plot parameters.

Value

A plot of the arcs of the CS-PCD whose vertices are the points in data set Xp and the triangle tri

Author(s)

Elvan Ceyhan

414 plotCSarcs.tri

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

plotCSarcs, plotPEarcs.tri and plotASarcs.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

t<-1.5 #try also t<-2

plotCSarcs.tri(Xp,Tr,t,M,main="Arcs of CS-PCD with t=1.5",xlab="",ylab="",edge.reg = TRUE)

or try the default center
#plotCSarcs.tri(Xp,Tr,t,main="Arcs of CS-PCD with t=1.5",xlab="",ylab="",edge.reg = TRUE);
#M=(arcsCStri(Xp,Tr,r)$param)$c #the part "M=(arcsPEtri(Xp,Tr,r)$param)$cent" is optional,
#for the below annotation of the plot

#can add vertex labels and text to the figure (with edge regions)
txt<-rbind(Tr,M)
xc<-txt[,1]+c(-.02,.02,.02,.03)
yc<-txt[,2]+c(.02,.02,.02,.03)
txt.str<-c("A","B","C","M")
text(xc,yc,txt.str)

End(Not run)

plotCSarcs1D 415

plotCSarcs1D The plot of the arcs of Central Similarity Proximity Catch Digraphs
(CS-PCDs) for 1D data (vertices jittered along y-coordinate) - multi-
ple interval case

Description

Plots the arcs of CS-PCD whose vertices are the 1D points, Xp. CS proximity regions are constructed
with expansion parameter t > 0 and centrality parameter c ∈ (0, 1) and the intervals are based on
Yp points (i.e. the intervalization is based on Yp points). That is, data set Xp constitutes the vertices
of the digraph and Yp determines the end points of the intervals.

For better visualization, a uniform jitter from U(−Jit, Jit) (default for Jit = .1) is added to the
y-direction where Jit equals to the range of Xp and Yp multiplied by Jit with default for Jit = .1).

centers is a logical argument, if TRUE, plot includes the centers of the intervals as vertical lines in
the plot, else centers of the intervals are not plotted.

See also (Ceyhan (2016)).

Usage

plotCSarcs1D(
Xp,
Yp,
t,
c = 0.5,
Jit = 0.1,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
centers = FALSE,
...

)

Arguments

Xp A vector of 1D points constituting the vertices of the CS-PCD.

Yp A vector of 1D points constituting the end points of the intervals.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

416 plotCSarcs1D

Jit A positive real number that determines the amount of jitter along the y-axis,
default=0.1 and Xp points are jittered according to U(−Jit, Jit) distribution
along the y-axis where Jit equals to the range of Xp and Yp multiplied by Jit).

main An overall title for the plot (default=NULL).

xlab, ylab Titles of the x and y axes in the plot (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

centers A logical argument, if TRUE, plot includes the centers of the intervals as vertical
lines in the plot, else centers of the intervals are not plotted.

... Additional plot parameters.

Value

A plot of the arcs of CS-PCD whose vertices are the 1D data set Xp in which vertices are jittered
along y-axis for better visualization.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

plotPEarcs1D

Examples

t<-1.5
c<-.4
a<-0; b<-10; int<-c(a,b)

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xr<-range(a,b)
xf<-(xr[2]-xr[1])*.1

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

Xlim=range(Xp,Yp)
Ylim=c(-.2,.2)

jit<-.1

plotCSregs 417

plotCSarcs1D(Xp,Yp,t,c,jit,xlab="",ylab="",xlim=Xlim,ylim=Ylim)

set.seed(1)
plotCSarcs1D(Xp,Yp,t=1.5,c=.3,jit,main="t=1.5, c=.3",xlab="",ylab="",centers=TRUE)
set.seed(1)
plotCSarcs1D(Xp,Yp,t=2,c=.3,jit,main="t=2, c=.3",xlab="",ylab="",centers=TRUE)
set.seed(1)
plotCSarcs1D(Xp,Yp,t=1.5,c=.5,jit,main="t=1.5, c=.5",xlab="",ylab="",centers=TRUE)
set.seed(1)
plotCSarcs1D(Xp,Yp,t=2,c=.5,jit,main="t=2, c=.5",xlab="",ylab="",centers=TRUE)

plotCSregs The plot of the Central Similarity (CS) Proximity Regions for a 2D
data set - multiple triangle case

Description

Plots the points in and outside of the Delaunay triangles based on Yp points which partition the
convex hull of Yp points and also plots the CS proximity regions for Xp points and the Delaunay
triangles based on Yp points.

CS proximity regions are constructed with respect to the Delaunay triangles with the expansion
parameter t > 0.

Edge regions in each triangle is based on the center M = (α, β, γ) in barycentric coordinates in
the interior of each Delaunay triangle (default for M = (1, 1, 1) which is the center of mass of the
triangle).

See (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)) more on the CS proximity regions. Also
see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and
the corresponding algorithm.

Usage

plotCSregs(
Xp,
Yp,
t,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
...

)

418 plotCSregs

Arguments

Xp A set of 2D points for which CS proximity regions are constructed.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter of
tri.

asp A numeric value, giving the aspect ratio y/x (default is NA), see the official help
page for asp by typing "? asp".

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

... Additional plot parameters.

Value

Plot of the Xp points, Delaunay triangles based on Yp and also the CS proximity regions for Xp
points inside the convex hull of Yp points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

plotCSregs.int 419

See Also

plotCSregs.tri, plotASregs and plotPEregs

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)
tau<-1.5 #try also tau<-2

plotCSregs(Xp,Yp,tau,M,xlab="",ylab="")

End(Not run)

plotCSregs.int The plot of the Central Similarity (CS) Proximity Regions for a general
interval (vertices jittered along y-coordinate) - one interval case

Description

Plots the points in and outside of the interval int and also the CS proximity regions (which are also
intervals). CS proximity regions are constructed with expansion parameter t > 0 and centrality
parameter c ∈ (0, 1).

For better visualization, a uniform jitter from U(−Jit, Jit) (default is Jit = .1) times range of
proximity regions and Xp) is added to the y-direction. center is a logical argument, if TRUE, plot
includes the center of the interval as a vertical line in the plot, else center of the interval is not
plotted.

Usage

plotCSregs.int(
Xp,
int,
t,
c = 0.5,
Jit = 0.1,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,

420 plotCSregs.int

ylim = NULL,
center = FALSE,
...

)

Arguments

Xp A set of 1D points for which CS proximity regions are to be constructed.

int A vector of two real numbers representing an interval.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Jit A positive real number that determines the amount of jitter along the y-axis, de-
fault=0.1 and Xp points are jittered according to U(−Jit, Jit) distribution along
the y-axis where Jit equals to the range of Xp and proximity region intervals
multiplied by Jit).

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges.

center A logical argument, if TRUE, plot includes the center of the interval as a vertical
line in the plot, else center of the interval is not plotted.

... Additional plot parameters.

Value

Plot of the CS proximity regions for 1D points in or outside the interval int

Author(s)

Elvan Ceyhan

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

plotCSregs1D, plotCSregs, and plotPEregs.int

Examples

c<-.4
tau<-2
a<-0; b<-10; int<-c(a,b)

plotCSregs.tri 421

n<-10
xf<-(int[2]-int[1])*.1

Xp<-runif(n,a-xf,b+xf) #try also Xp<-runif(n,a-5,b+5)

plotCSregs.int(7,int,tau,c,xlab="x",ylab="")

plotCSregs.int(Xp,int,tau,c,xlab="x",ylab="")

plotCSregs.int(17,int,tau,c,xlab="x",ylab="")
plotCSregs.int(1,int,tau,c,xlab="x",ylab="")
plotCSregs.int(4,int,tau,c,xlab="x",ylab="")

plotCSregs.int(-7,int,tau,c,xlab="x",ylab="")

plotCSregs.tri The plot of the Central Similarity (CS) Proximity Regions for a 2D
data set - one triangle case

Description

Plots the points in and outside of the triangle tri and also the CS proximity regions which are also
triangular for points inside the triangle tri with edge regions are based on the center of mass CM.

CS proximity regions are defined with respect to the triangle tri with expansion parameter t > 0,
so CS proximity regions are defined only for points inside the triangle tri.

Edge regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in
barycentric coordinates in the interior of the triangle tri; default is M = (1, 1, 1) i.e., the center of
mass of tri.

See also (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan (2014)).

Usage

plotCSregs.tri(
Xp,
tri,
t,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
edge.reg = FALSE,
...

)

422 plotCSregs.tri

Arguments

Xp A set of 2D points for which CS proximity regions are constructed.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

t A positive real number which serves as the expansion parameter in CS proximity
region.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri; default is M =
(1, 1, 1) i.e., the center of mass of tri.

asp A numeric value, giving the aspect ratio y/x (default is NA), see the official help
page for asp by typing "? asp".

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

edge.reg A logical argument to add edge regions to the plot, default is edge.reg=FALSE.

... Additional plot parameters.

Value

Plot of the CS proximity regions for points inside the triangle tri (and just the points outside tri)

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2014). “Comparison of Relative Density of Two Random Geometric Digraph Fami-
lies in Testing Spatial Clustering.” TEST, 23(1), 100-134.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

plotCSregs, plotASregs.tri and plotPEregs.tri,

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

plotCSregs1D 423

set.seed(1)
Xp0<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

t<-.5 #try also t<-2

plotCSregs.tri(Xp0,Tr,t,M,main="Proximity Regions for CS-PCD", xlab="",ylab="")

Xp = Xp0[1,]
plotCSregs.tri(Xp,Tr,t,M,main="CS Proximity Regions with t=.5", xlab="",ylab="",edge.reg=TRUE)

or try the default center
plotCSregs.tri(Xp,Tr,t,main="CS Proximity Regions with t=.5", xlab="",ylab="",edge.reg=TRUE);
#M=(arcsCStri(Xp,Tr,r)$param)$c #the part "M=(arcsPEtri(Xp,Tr,r)$param)$cent" is optional,
#for the below annotation of the plot

#can add vertex labels and text to the figure (with edge regions)
txt<-rbind(Tr,M)
xc<-txt[,1]+c(-.02,.02,.02,.02)
yc<-txt[,2]+c(.02,.02,.02,.03)
txt.str<-c("A","B","C","M")
text(xc,yc,txt.str)

End(Not run)

plotCSregs1D The plot of the Central Similarity (CS) Proximity Regions (vertices
jittered along y-coordinate) - multiple interval case

Description

Plots the points in and outside of the intervals based on Yp points and also the CS proximity regions
(which are also intervals).

CS proximity region is constructed with expansion parameter t > 0 and centrality parameter c ∈
(0, 1). For better visualization, a uniform jitter from U(−Jit, Jit) (default is Jit = .1) times range
of Xp and Yp and the proximity regions (intervals)) is added to the y-direction.

centers is a logical argument, if TRUE, plot includes the centers of the intervals as vertical lines in
the plot, else centers of the intervals are not plotted.

See also (Ceyhan (2016)).

Usage

plotCSregs1D(
Xp,
Yp,
t,

424 plotCSregs1D

c = 0.5,
Jit = 0.1,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
centers = FALSE,
...

)

Arguments

Xp A set of 1D points for which CS proximity regions are plotted.

Yp A set of 1D points which constitute the end points of the intervals which partition
the real line.

t A positive real number which serves as the expansion parameter in CS proximity
region.

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Jit A positive real number that determines the amount of jitter along the y-axis,
default=0.1 and Xp points are jittered according to U(−Jit, Jit) distribution
along the y-axis where Jit equals to the range of Xp and Yp and the proximity
regions (intervals) multiplied by Jit).

main An overall title for the plot (default=NULL).

xlab, ylab Titles of the x and y axes in the plot (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

centers A logical argument, if TRUE, plot includes the centers of the intervals as vertical
lines in the plot, else centers of the intervals are not plotted.

... Additional plot parameters.

Value

Plot of the CS proximity regions for 1D points located in the middle or end intervals based on Yp
points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

plotDelaunay.tri 425

See Also

plotCSregs.int and plotPEregs1D

Examples

t<-2
c<-.4
a<-0; b<-10;

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xr<-range(a,b)
xf<-(xr[2]-xr[1])*.1

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

plotCSregs1D(Xp,Yp,t,c,xlab="",ylab="")

plotCSregs1D(Xp,Yp+10,t,c,xlab="",ylab="")

plotDelaunay.tri The scatterplot of points from one class and plot of the Delaunay tri-
angulation of the other class

Description

Plots the scatter plot of Xp points together with the Delaunay triangles based on the Yp points. Both
sets of points are of 2D.

See (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and
the corresponding algorithm.

Usage

plotDelaunay.tri(
Xp,
Yp,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
...

)

426 plotDelaunay.tri

Arguments

Xp A set of 2D points whose scatterplot is to be plotted.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both)

... Additional plot parameters.

Value

A scatterplot of Xp points and the Delaunay triangulation of Yp points.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

plot.triSht in interp package

Examples

Not run:
nx<-20; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

plotDelaunay.tri(Xp,Yp,xlab="",ylab="",main="X points and Delaunay Triangulation of Y points")

End(Not run)

plotIntervals 427

plotIntervals The plot of the subintervals based on Yp points together with Xp points

Description

Plots the Xp points and the intervals based on Yp points.

Usage

plotIntervals(
Xp,
Yp,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
...

)

Arguments

Xp A set of 1D points whose scatter-plot is provided.

Yp A set of 1D points which constitute the end points of the intervals which partition
the real line.

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

... Additional plot parameters.

Value

Plot of the intervals based on Yp points and also scatter plot of Xp points

Author(s)

Elvan Ceyhan

See Also

plotPEregs1D and plotDelaunay.tri

428 plotPEarcs

Examples

Not run:
a<-0; b<-10;

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-runif(nx,a,b)
Yp<-runif(ny,a,b)

plotIntervals(Xp,Yp,xlab="",ylab="")

End(Not run)

plotPEarcs The plot of the arcs of Proportional Edge Proximity Catch Digraph
(PE-PCD) for a 2D data set - multiple triangle case

Description

Plots the arcs of Proportional Edge Proximity Catch Digraph (PE-PCD) whose vertices are the data
points in Xp in the multiple triangle case and the Delaunay triangles based on Yp points.

PE proximity regions are defined with respect to the Delaunay triangles based on Yp points with ex-
pansion parameter r ≥ 1 and vertex regions in each triangle are based on the center M = (α, β, γ)
in barycentric coordinates in the interior of each Delaunay triangle or based on circumcenter of
each Delaunay triangle (default for M = (1, 1, 1) which is the center of mass of the triangle). Each
Delaunay triangle is first converted to an (nonscaled) basic triangle so that M will be the same type
of center for each Delaunay triangle (this conversion is not necessary when M is CM).

Convex hull of Yp is partitioned by the Delaunay triangles based on Yp points (i.e., multiple triangles
are the set of these Delaunay triangles whose union constitutes the convex hull of Yp points). Loops
are not allowed so arcs are only possible for points inside the convex hull of Yp points.

See (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)) for more on the PE-PCDs. Also, see
(Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and the
corresponding algorithm.

Usage

plotPEarcs(
Xp,
Yp,
r,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,

plotPEarcs 429

ylab = NULL,
xlim = NULL,
ylim = NULL,
...

)

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 3D point in barycentric coordinates which serves as a center in the interior
of each Delaunay triangle or circumcenter of each Delaunay triangle (for this,
argument should be set as M="CC"), default for M = (1, 1, 1) which is the center
of mass of each triangle.

asp A numeric value, giving the aspect ratio y/x (default is NA), see the official help
page for asp by typing "? asp".

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

... Additional plot parameters.

Value

A plot of the arcs of the PE-PCD whose vertices are the points in data set Xp and the Delaunay
triangles based on Yp points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics

430 plotPEarcs.int

& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

plotPEarcs.tri, plotASarcs, and plotCSarcs

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)

r<-1.5 #try also r<-2

plotPEarcs(Xp,Yp,r,M,xlab="",ylab="")

End(Not run)

plotPEarcs.int The plot of the arcs of Proportional Edge Proximity Catch Digraphs
(PE-PCDs) for 1D data (vertices jittered along y-coordinate) - one
interval case

Description

Plots the arcs of PE-PCD whose vertices are the 1D points, Xp. PE proximity regions are constructed
with expansion parameter r ≥ 1 and centrality parameter c ∈ (0, 1) and the intervals are based
on the interval int= (a, b) That is, data set Xp constitutes the vertices of the digraph and int
determines the end points of the interval.

For better visualization, a uniform jitter from U(−Jit, Jit) (default for Jit = .1) is added to the
y-direction where Jit equals to the range of {Xp, int} multiplied by Jit with default for Jit = .1).
center is a logical argument, if TRUE, plot includes the center of the interval int as a vertical line
in the plot, else center of the interval is not plotted.

See also (Ceyhan (2012)).

plotPEarcs.int 431

Usage

plotPEarcs.int(
Xp,
int,
r,
c = 0.5,
Jit = 0.1,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
center = FALSE,
...

)

Arguments

Xp A vector of 1D points constituting the vertices of the PE-PCD.

int A vector of two 1D points constituting the end points of the interval.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center of the interval with
the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Jit A positive real number that determines the amount of jitter along the y-axis,
default=0.1 and Xp points are jittered according to U(−Jit, Jit) distribution
along the y-axis where Jit equals to the range of range of {Xp, int} multiplied
by Jit).

main An overall title for the plot (default=NULL).

xlab, ylab Titles of the x and y axes in the plot (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

center A logical argument, if TRUE, plot includes the center of the interval int as a
vertical line in the plot, else center of the interval is not plotted.

... Additional plot parameters.

Value

A plot of the arcs of PE-PCD whose vertices are the 1D data set Xp in which vertices are jittered
along y-axis for better visualization.

Author(s)

Elvan Ceyhan

432 plotPEarcs.tri

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

plotPEarcs1D and plotCSarcs.int

Examples

Not run:
r<-2
c<-.4
a<-0; b<-10; int<-c(a,b)

#n is number of X points
n<-10; #try also n<-20;

set.seed(1)
xf<-(int[2]-int[1])*.1

Xp<-runif(n,a-xf,b+xf)

Xlim=range(Xp,int)
Ylim=.1*c(-1,1)

jit<-.1
set.seed(1)
plotPEarcs.int(Xp,int,r=1.5,c=.3,jit,xlab="",ylab="",center=TRUE)
set.seed(1)
plotPEarcs.int(Xp,int,r=2,c=.3,jit,xlab="",ylab="",center=TRUE)

End(Not run)

plotPEarcs.tri The plot of the arcs of Proportional Edge Proximity Catch Digraph
(PE-PCD) for a 2D data set - one triangle case

Description

Plots the arcs of PE-PCD whose vertices are the data points, Xp and the triangle tri. PE proximity
regions are constructed with respect to the triangle tri with expansion parameter r ≥ 1, i.e., arcs
may exist only for Xp points inside the triangle tri.

Vertex regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ)
in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri;
default is M = (1, 1, 1), i.e., the center of mass of tri. When the center is the circumcenter, CC,
the vertex regions are constructed based on the orthogonal projections to the edges, while with any

plotPEarcs.tri 433

interior center M, the vertex regions are constructed using the extensions of the lines combining
vertices with M. M-vertex regions are recommended spatial inference, due to geometry invariance
property of the arc density and domination number the PE-PCDs based on uniform data.

See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)).

Usage

plotPEarcs.tri(
Xp,
tri,
r,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
vert.reg = FALSE,
...

)

Arguments

Xp A set of 2D points which constitute the vertices of the PE-PCD.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; default is M = (1, 1, 1), i.e., the
center of mass of tri.

asp A numeric value, giving the aspect ratio y/x (default is NA), see the official help
page for asp by typing "? asp".

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

vert.reg A logical argument to add vertex regions to the plot, default is vert.reg=FALSE.

... Additional plot parameters.

Value

A plot of the arcs of the PE-PCD whose vertices are the points in data set Xp and the triangle tri

434 plotPEarcs.tri

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

plotASarcs.tri, plotCSarcs.tri, and plotPEarcs

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10 #try also n<-20

set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g)
#try also M<-c(1.6,1.0) or M<-circumcenter.tri(Tr)
r<-1.5 #try also r<-2
plotPEarcs.tri(Xp,Tr,r,M,main="Arcs of PE-PCD with r = 1.5",
xlab="",ylab="",vert.reg = TRUE)

or try the default center
#plotPEarcs.tri(Xp,Tr,r,main="Arcs of PE-PCD with r = 1.5",
#xlab="",ylab="",vert.reg = TRUE);
#M=(arcsPEtri(Xp,Tr,r)$param)$cent
#the part "M=(arcsPEtri(Xp,Tr,r)$param)$cent" is optional,
#for the below annotation of the plot

#can add vertex labels and text to the figure (with vertex regions)
ifelse(isTRUE(all.equal(M,circumcenter.tri(Tr))),
{Ds<-rbind((B+C)/2,(A+C)/2,(A+B)/2); cent.name="CC"},
{Ds<-prj.cent2edges(Tr,M); cent.name="M"})

txt<-rbind(Tr,M,Ds)
xc<-txt[,1]+c(-.02,.02,.02,.02,.04,-0.03,-.01)
yc<-txt[,2]+c(.02,.02,.02,.07,.02,.04,-.06)

plotPEarcs1D 435

txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

plotPEarcs1D The plot of the arcs of Proportional Edge Proximity Catch Digraphs
(PE-PCDs) for 1D data (vertices jittered along y-coordinate) - multi-
ple interval case

Description

Plots the arcs of PE-PCD whose vertices are the 1D points, Xp. PE proximity regions are constructed
with expansion parameter r ≥ 1 and centrality parameter c ∈ (0, 1) and the intervals are based on
Yp points (i.e. the intervalization is based on Yp points). That is, data set Xp constitutes the vertices
of the digraph and Yp determines the end points of the intervals.

For better visualization, a uniform jitter from U(−Jit, Jit) (default for Jit = .1) is added to the
y-direction where Jit equals to the range of Xp and Yp multiplied by Jit with default for Jit = .1).
centers is a logical argument, if TRUE, plot includes the centers of the intervals as vertical lines in
the plot, else centers of the intervals are not plotted.

See also (Ceyhan (2012)).

Usage

plotPEarcs1D(
Xp,
Yp,
r,
c = 0.5,
Jit = 0.1,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
centers = FALSE,
...

)

Arguments

Xp A vector of 1D points constituting the vertices of the PE-PCD.

Yp A vector of 1D points constituting the end points of the intervals.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

436 plotPEarcs1D

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, (a, b), the parameterized center is Mc =
a+ c(b− a).

Jit A positive real number that determines the amount of jitter along the y-axis,
default=0.1 and Xp points are jittered according to U(−Jit, Jit) distribution
along the y-axis where Jit equals to the range of the union of Xp and Yp points
multiplied by Jit).

main An overall title for the plot (default=NULL).

xlab, ylab Titles of the x and y axes in the plot (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

centers A logical argument, if TRUE, plot includes the centers of the intervals as vertical
lines in the plot, else centers of the intervals are not plotted.

... Additional plot parameters.

Value

A plot of the arcs of PE-PCD whose vertices are the 1D data set Xp in which vertices are jittered
along y-axis for better visualization.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

plotPEarcs.int and plotCSarcs1D

Examples

Not run:
r<-2
c<-.4
a<-0; b<-10; int<-c(a,b)

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xf<-(int[2]-int[1])*.1

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

plotPEregs 437

Xlim=range(Xp,Yp)
Ylim=.1*c(-1,1)

jit<-.1

set.seed(1)
plotPEarcs1D(Xp,Yp,r=1.5,c=.3,jit,xlab="",ylab="",centers=TRUE)
set.seed(1)
plotPEarcs1D(Xp,Yp,r=2,c=.3,jit,xlab="",ylab="",centers=TRUE)

End(Not run)

plotPEregs The plot of the Proportional Edge (PE) Proximity Regions for a 2D
data set - multiple triangle case

Description

Plots the points in and outside of the Delaunay triangles based on Yp points which partition the
convex hull of Yp points and also plots the PE proximity regions for Xp points and the Delaunay
triangles based on Yp points.

PE proximity regions are constructed with respect to the Delaunay triangles with the expansion
parameter r ≥ 1.

Vertex regions in each triangle is based on the center M = (α, β, γ) in barycentric coordinates in
the interior of each Delaunay triangle or based on circumcenter of each Delaunay triangle (default
for M = (1, 1, 1) which is the center of mass of the triangle).

See (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)) for more on the PE proximity regions.
Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation
and the corresponding algorithm.

Usage

plotPEregs(
Xp,
Yp,
r,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
...

)

438 plotPEregs

Arguments

Xp A set of 2D points for which PE proximity regions are constructed.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 3D point in barycentric coordinates which serves as a center in the interior
of each Delaunay triangle or circumcenter of each Delaunay triangle (for this,
argument should be set as M="CC"), default for M = (1, 1, 1) which is the center
of mass of each triangle.

asp A numeric value, giving the aspect ratio y/x (default is NA), see the official help
page for asp by typing "? asp".

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both)

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

... Additional plot parameters.

Value

Plot of the Xp points, Delaunay triangles based on Yp points and also the PE proximity regions for
Xp points inside the convex hull of Yp points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

plotPEregs.int 439

See Also

plotPEregs.tri, plotASregs, and plotCSregs

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),
runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-c(1,1,1) #try also M<-c(1,2,3)
r<-1.5 #try also r<-2

plotPEregs(Xp,Yp,r,M,xlab="",ylab="")

End(Not run)

plotPEregs.int The plot of the Proportional Edge (PE) Proximity Regions for a gen-
eral interval (vertices jittered along y-coordinate) - one interval case

Description

Plots the points in and outside of the interval int and also the PE proximity regions (which are also
intervals). PE proximity regions are constructed with expansion parameter r ≥ 1 and centrality
parameter c ∈ (0, 1).

For better visualization, a uniform jitter from U(−Jit, Jit) (default is Jit = .1) times range of
proximity regions and Xp) is added to the y-direction. center is a logical argument, if TRUE, plot
includes the center of the interval as a vertical line in the plot, else center of the interval is not
plotted.

See also (Ceyhan (2012)).

Usage

plotPEregs.int(
Xp,
int,
r,
c = 0.5,
Jit = 0.1,
main = NULL,

440 plotPEregs.int

xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
center = FALSE,
...

)

Arguments

Xp A set of 1D points for which PE proximity regions are to be constructed.

int A vector of two real numbers representing an interval.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Jit A positive real number that determines the amount of jitter along the y-axis,
default=0.1 and Xp points are jittered according to U(−Jit, Jit) distribution
along the y-axis where Jit equals to the range of the union of Xp and Yp points
multiplied by Jit).

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges.

center A logical argument, if TRUE, plot includes the center of the interval as a vertical
line in the plot, else center of the interval is not plotted.

... Additional plot parameters.

Value

Plot of the PE proximity regions for 1D points in or outside the interval int

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

plotPEregs1D, plotCSregs.int, and plotCSregs.int

plotPEregs.std.tetra 441

Examples

Not run:
c<-.4
r<-2
a<-0; b<-10; int<-c(a,b)

n<-10
xf<-(int[2]-int[1])*.1
Xp<-runif(n,a-xf,b+xf) #try also Xp<-runif(n,a-5,b+5)
plotPEregs.int(Xp,int,r,c,xlab="x",ylab="")

plotPEregs.int(7,int,r,c,xlab="x",ylab="")

End(Not run)

plotPEregs.std.tetra The plot of the Proportional Edge (PE) Proximity Regions for a 3D
data set - standard regular tetrahedron case

Description

Plots the points in and outside of the standard regular tetrahedron Th = T ((0, 0, 0), (1, 0, 0), (1/2,
√
3/2, 0), (1/2,

√
3/6,

√
6/3))

and also the PE proximity regions for points in data set Xp.

PE proximity regions are defined with respect to the standard regular tetrahedron Th with expansion
parameter r ≥ 1, so PE proximity regions are defined only for points inside Th.

Vertex regions are based on circumcenter (which is equivalent to the center of mass for the standard
regular tetrahedron) of Th.

See also (Ceyhan (2005, 2010)).

Usage

plotPEregs.std.tetra(
Xp,
r,
main = NULL,
xlab = NULL,
ylab = NULL,
zlab = NULL,
xlim = NULL,
ylim = NULL,
zlim = NULL,
...

)

442 plotPEregs.std.tetra

Arguments

Xp A set of 3D points for which PE proximity regions are constructed.
r A positive real number which serves as the expansion parameter in PE proximity

region; must be ≥ 1.
main An overall title for the plot (default=NULL).
xlab, ylab, zlab titles for the x, y, and z axes, respectively (default=NULL for all).
xlim, ylim, zlim Two numeric vectors of length 2, giving the x-, y-, and z-coordinate ranges

(default=NULL for all).
... Additional scatter3D parameters.

Value

Plot of the PE proximity regions for points inside the standard regular tetrahedron Th (and just the
points outside Th)

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

plotPEregs, plotASregs.tri, plotASregs, plotCSregs.tri, and plotCSregs

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
r<-1.5

n<-3 #try also n<-20
Xp<-runif.std.tetra(n)$g #try also Xp[,1]<-Xp[,1]+1

plotPEregs.std.tetra(Xp[1:3,],r)

P1<-c(.1,.1,.1)
plotPEregs.std.tetra(rbind(P1,P1),r)

End(Not run)

plotPEregs.tetra 443

plotPEregs.tetra The plot of the Proportional Edge (PE) Proximity Regions for a 3D
data set - one tetrahedron case

Description

Plots the points in and outside of the tetrahedron th and also the PE proximity regions (which are
also tetrahedrons) for points inside the tetrahedron th.

PE proximity regions are constructed with respect to tetrahedron th with expansion parameter r ≥ 1
and vertex regions are based on the center M which is circumcenter ("CC") or center of mass ("CM")
of th with default="CM", so PE proximity regions are defined only for points inside the tetrahedron
th.

See also (Ceyhan (2005, 2010)).

Usage

plotPEregs.tetra(
Xp,
th,
r,
M = "CM",
main = NULL,
xlab = NULL,
ylab = NULL,
zlab = NULL,
xlim = NULL,
ylim = NULL,
zlim = NULL,
...

)

Arguments

Xp A set of 3D points for which PE proximity regions are constructed.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M The center to be used in the construction of the vertex regions in the tetrahedron,
th. Currently it only takes "CC" for circumcenter and "CM" for center of mass;
default="CM".

main An overall title for the plot (default=NULL).

xlab, ylab, zlab Titles for the x, y, and z axes, respectively (default=NULL for all).

xlim, ylim, zlim Two numeric vectors of length 2, giving the x-, y-, and z-coordinate ranges
(default=NULL for all).

... Additional scatter3D parameters.

444 plotPEregs.tri

Value

Plot of the PE proximity regions for points inside the tetrahedron th (and just the points outside th)

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

plotPEregs.std.tetra, plotPEregs.tri and plotPEregs.int

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
set.seed(1)
tetra<-rbind(A,B,C,D)+matrix(runif(12,-.25,.25),ncol=3) #adding jitter to make it non-regular

n<-5 #try also n<-20
Xp<-runif.tetra(n,tetra)$g #try also Xp[,1]<-Xp[,1]+1

M<-"CM" #try also M<-"CC"
r<-1.5

plotPEregs.tetra(Xp,tetra,r) #uses the default M="CM"
plotPEregs.tetra(Xp,tetra,r,M="CC")

plotPEregs.tetra(Xp[1,],tetra,r) #uses the default M="CM"
plotPEregs.tetra(Xp[1,],tetra,r,M)

End(Not run)

plotPEregs.tri The plot of the Proportional Edge (PE) Proximity Regions for a 2D
data set - one triangle case

plotPEregs.tri 445

Description

Plots the points in and outside of the triangle tri and also the PE proximity regions for points in
data set Xp.

PE proximity regions are defined with respect to the triangle tri with expansion parameter r ≥ 1,
so PE proximity regions are defined only for points inside the triangle tri.

Vertex regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ)
in barycentric coordinates in the interior of the triangle tri or based on the circumcenter of tri;
default is M = (1, 1, 1), i.e., the center of mass of tri. When the center is the circumcenter, CC,
the vertex regions are constructed based on the orthogonal projections to the edges, while with any
interior center M, the vertex regions are constructed using the extensions of the lines combining
vertices with M. M-vertex regions are recommended spatial inference, due to geometry invariance
property of the arc density and domination number the PE-PCDs based on uniform data.

See also (Ceyhan (2005); Ceyhan et al. (2006); Ceyhan (2011)).

Usage

plotPEregs.tri(
Xp,
tri,
r,
M = c(1, 1, 1),
asp = NA,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,
ylim = NULL,
vert.reg = FALSE,
...

)

Arguments

Xp A set of 2D points for which PE proximity regions are constructed.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter
of tri which may be entered as "CC" as well; default is M = (1, 1, 1), i.e., the
center of mass of tri.

asp A numeric value, giving the aspect ratio y/x (default is NA), see the official help
page for asp by typing "? asp".

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

446 plotPEregs.tri

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

vert.reg A logical argument to add vertex regions to the plot, default is vert.reg=FALSE.

... Additional plot parameters.

Value

Plot of the PE proximity regions for points inside the triangle tri (and just the points outside tri)

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

plotPEregs, plotASregs.tri, and plotCSregs.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10

set.seed(1)
Xp0<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g)
#try also M<-c(1.6,1.0) or M = circumcenter.tri(Tr)
r<-1.5 #try also r<-2

plotPEregs.tri(Xp0,Tr,r,M)
Xp = Xp0[1,]
plotPEregs.tri(Xp,Tr,r,M)

plotPEregs.tri(Xp,Tr,r,M,
main="PE Proximity Regions with r = 1.5",
xlab="",ylab="",vert.reg = TRUE)

plotPEregs1D 447

or try the default center
#plotPEregs.tri(Xp,Tr,r,main="PE Proximity Regions with r = 1.5",xlab="",ylab="",vert.reg = TRUE);
#M=(arcsPEtri(Xp,Tr,r)$param)$c
#the part "M=(arcsPEtri(Xp,Tr,r)$param)$cent" is optional,
#for the below annotation of the plot

#can add vertex labels and text to the figure (with vertex regions)
ifelse(isTRUE(all.equal(M,circumcenter.tri(Tr))),

{Ds<-rbind((B+C)/2,(A+C)/2,(A+B)/2); cent.name="CC"},
{Ds<-prj.cent2edges(Tr,M); cent.name<-"M"})

txt<-rbind(Tr,M,Ds)
xc<-txt[,1]+c(-.02,.02,.02,.02,.03,-0.03,-.01)
yc<-txt[,2]+c(.02,.02,.02,.07,.02,.05,-.06)
txt.str<-c("A","B","C",cent.name,"D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

plotPEregs1D The plot of the Proportional Edge (PE) Proximity Regions (vertices
jittered along y-coordinate) - multiple interval case

Description

Plots the points in and outside of the intervals based on Yp points and also the PE proximity regions
(i.e., intervals). PE proximity region is constructed with expansion parameter r ≥ 1 and centrality
parameter c ∈ (0, 1).

For better visualization, a uniform jitter from U(−Jit, Jit) (default is Jit = .1) times range of Xp
and Yp and the proximity regions (intervals)) is added to the y-direction.

centers is a logical argument, if TRUE, plot includes the centers of the intervals as vertical lines in
the plot, else centers of the intervals are not plotted.

See also (Ceyhan (2012)).

Usage

plotPEregs1D(
Xp,
Yp,
r,
c = 0.5,
Jit = 0.1,
main = NULL,
xlab = NULL,
ylab = NULL,
xlim = NULL,

448 plotPEregs1D

ylim = NULL,
centers = FALSE,
...

)

Arguments

Xp A set of 1D points for which PE proximity regions are plotted.

Yp A set of 1D points which constitute the end points of the intervals which partition
the real line.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be ≥ 1.

c A positive real number in (0, 1) parameterizing the center inside middle intervals
with the default c=.5. For the interval, (a, b), the parameterized center is Mc =
a+ c(b− a).

Jit A positive real number that determines the amount of jitter along the y-axis,
default=0.1 and Xp points are jittered according to U(−Jit, Jit) distribution
along the y-axis where Jit equals to the range of the union of Xp and Yp points
multiplied by Jit).

main An overall title for the plot (default=NULL).

xlab, ylab Titles for the x and y axes, respectively (default=NULL for both).

xlim, ylim Two numeric vectors of length 2, giving the x- and y-coordinate ranges (de-
fault=NULL for both).

centers A logical argument, if TRUE, plot includes the centers of the intervals as vertical
lines in the plot, else centers of the intervals are not plotted (default is FALSE).

... Additional plot parameters.

Value

Plot of the PE proximity regions for 1D points located in the middle or end intervals based on Yp
points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch
Digraph Based on Uniform Data.” Metrika, 75(6), 761-793.

See Also

plotPEregs1D, plotCSregs.int, and plotCSregs1D

print.Extrema 449

Examples

Not run:
r<-2
c<-.4
a<-0; b<-10; int<-c(a,b);

#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-15; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
xf<-(int[2]-int[1])*.1

Xp<-runif(nx,a-xf,b+xf)
Yp<-runif(ny,a,b)

plotPEregs1D(Xp,Yp,r,c,xlab="x",ylab="")

End(Not run)

print.Extrema Print a Extrema object

Description

Prints the call of the object of class "Extrema" and also the type (i.e. a brief description) of the
extrema).

Usage

S3 method for class 'Extrema'
print(x, ...)

Arguments

x A Extrema object.

... Additional arguments for the S3 method 'print'.

Value

The call of the object of class "Extrema" and also the type (i.e. a brief description) of the
extrema).

See Also

summary.Extrema, print.summary.Extrema, and plot.Extrema

450 print.Lines

Examples

Not run:
n<-10
Xp<-runif.std.tri(n)$gen.points
Ext<-cl2edges.std.tri(Xp)
Ext
print(Ext)

typeof(Ext))
attributes(Ext)

End(Not run)

print.Lines Print a Lines object

Description

Prints the call of the object of class "Lines" and also the coefficients of the line (in the form:
y = slope * x + intercept).

Usage

S3 method for class 'Lines'
print(x, ...)

Arguments

x A Lines object.

... Additional arguments for the S3 method 'print'.

Value

The call of the object of class "Lines" and the coefficients of the line (in the form: y = slope
* x + intercept).

See Also

summary.Lines, print.summary.Lines, and plot.Lines

Examples

A<-c(-1.22,-2.33); B<-c(2.55,3.75)
xr<-range(A,B);
xf<-(xr[2]-xr[1])*.1 #how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=3) #try also l=10, 20 or 100

print.Lines3D 451

lnAB<-Line(A,B,x)
lnAB
print(lnAB)

typeof(lnAB)
attributes(lnAB)

print.Lines3D Print a Lines3D object

Description

Prints the call of the object of class "Lines3D", the coefficients of the line (in the form: x=x0
+ A*t, y=y0 + B*t, and z=z0 + C*t), and the initial point together with the direction vector.

Usage

S3 method for class 'Lines3D'
print(x, ...)

Arguments

x A Lines3D object.

... Additional arguments for the S3 method 'print'.

Value

The call of the object of class "Lines3D", the coefficients of the line (in the form: x=x0 +
A*t, y=y0 + B*t, and z=z0 + C*t), and the initial point together with the direction vector.

See Also

summary.Lines3D, print.summary.Lines3D, and plot.Lines3D

Examples

Not run:
P<-c(1,10,3); Q<-c(1,1,3);
vecs<-rbind(P,Q)
Line3D(P,Q,.1)
Line3D(P,Q,.1,dir.vec=FALSE)

tr<-range(vecs);
tf<-(tr[2]-tr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf*10-tf,tf*10+tf,l=3) #try also l=10, 20 or 100

lnPQ3D<-Line3D(P,Q,tsq)

452 print.NumArcs

lnPQ3D
print(lnPQ3D)

typeof(lnPQ3D)
attributes(lnPQ3D)

End(Not run)

print.NumArcs Print a NumArcs object

Description

Prints the call of the object of class "NumArcs" and also the desc (i.e. a brief description) of the
output.

Usage

S3 method for class 'NumArcs'
print(x, ...)

Arguments

x A NumArcs object.

... Additional arguments for the S3 method 'print'.

Value

The call of the object of class "NumArcs" and also the desc (i.e. a brief description) of the
output: number of arcs in the proximity catch digraph (PCD) and related quantities in the induced
subdigraphs for points in the Delaunay cells.

See Also

summary.NumArcs, print.summary.NumArcs, and plot.NumArcs

Examples

Not run:
nx<-15; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx),runif(nx))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

M<-"CC" #try also M<-c(1,1,1)

print.Patterns 453

Narcs<-num.arcsAS(Xp,Yp,M)
Narcs
print(Narcs)

typeof(Narcs)
attributes(Narcs)

End(Not run)

print.Patterns Print a Patterns object

Description

Prints the call of the object of class "Patterns" and also the type (or description) of the pattern).

Usage

S3 method for class 'Patterns'
print(x, ...)

Arguments

x A Patterns object.

... Additional arguments for the S3 method 'print'.

Value

The call of the object of class "Patterns" and also the type (or description) of the pattern).

See Also

summary.Patterns, print.summary.Patterns, and plot.Patterns

Examples

Not run:
nx<-10; #try also 20, 100, and 1000
ny<-5; #try also 1
e<-.15;
Y<-cbind(runif(ny),runif(ny))
#with default bounding box (i.e., unit square)

Xdt<-rseg.circular(nx,Y,e)
Xdt
print(Xdt)

typeof(Xdt))

454 print.PCDs

attributes(Xdt)

End(Not run)

print.PCDs Print a PCDs object

Description

Prints the call of the object of class "PCDs" and also the type (i.e. a brief description) of the
proximity catch digraph (PCD.

Usage

S3 method for class 'PCDs'
print(x, ...)

Arguments

x A PCDs object.

... Additional arguments for the S3 method 'print'.

Value

The call of the object of class "PCDs" and also the type (i.e. a brief description) of the proximity
catch digraph (PCD.

See Also

summary.PCDs, print.summary.PCDs, and plot.PCDs

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g)
Arcs<-arcsAStri(Xp,Tr,M)
Arcs
print(Arcs)

typeof(Arcs))
attributes(Arcs)

End(Not run)

print.Planes 455

print.Planes Print a Planes object

Description

Prints the call of the object of class "Planes" and also the coefficients of the plane (in the
form: z = A*x + B*y + C).

Usage

S3 method for class 'Planes'
print(x, ...)

Arguments

x A Planes object.
... Additional arguments for the S3 method 'print'.

Value

The call of the object of class "Planes" and the coefficients of the plane (in the form: z =
A*x + B*y + C).

See Also

summary.Planes, print.summary.Planes, and plot.Planes

Examples

Not run:
P<-c(1,10,3); Q<-c(1,1,3); C<-c(3,9,12)
pts<-rbind(P,Q,C)

xr<-range(pts[,1]); yr<-range(pts[,2])
xf<-(xr[2]-xr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*.1
#how far to go at the lower and upper ends in the y-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20 or 100
y<-seq(yr[1]-yf,yr[2]+yf,l=5) #try also l=10, 20 or 100

plPQC<-Plane(P,Q,C,x,y)
plPQC
print(plPQC)

typeof(plPQC)
attributes(plPQC)

End(Not run)

456 print.summary.Lines

print.summary.Extrema Print a summary of a Extrema object

Description

Prints some information about the object.

Usage

S3 method for class 'summary.Extrema'
print(x, ...)

Arguments

x An object of class "summary.Extrema", generated by summary.Extrema.

... Additional parameters for print.

Value

None

See Also

print.Extrema, summary.Extrema, and plot.Extrema

print.summary.Lines Print a summary of a Lines object

Description

Prints some information about the object.

Usage

S3 method for class 'summary.Lines'
print(x, ...)

Arguments

x An object of class "summary.Lines", generated by summary.Lines.

... Additional parameters for print.

Value

None

print.summary.Lines3D 457

See Also

print.Lines, summary.Lines, and plot.Lines

print.summary.Lines3D Print a summary of a Lines3D object

Description

Prints some information about the object.

Usage

S3 method for class 'summary.Lines3D'
print(x, ...)

Arguments

x An object of class "summary.Lines3D", generated by summary.Lines3D.

... Additional parameters for print.

Value

None

See Also

print.Lines3D, summary.Lines3D, and plot.Lines3D

print.summary.NumArcs Print a summary of a NumArcs object

Description

Prints some information about the object.

Usage

S3 method for class 'summary.NumArcs'
print(x, ...)

Arguments

x An object of class "summary.NumArcs", generated by summary.NumArcs.

... Additional parameters for print.

458 print.summary.PCDs

Value

None

See Also

print.NumArcs, summary.NumArcs, and plot.NumArcs

print.summary.Patterns

Print a summary of a Patterns object

Description

Prints some information about the object.

Usage

S3 method for class 'summary.Patterns'
print(x, ...)

Arguments

x An object of class "summary.Patterns", generated by summary.Patterns.

... Additional parameters for print.

Value

None

See Also

print.Patterns, summary.Patterns, and plot.Patterns

print.summary.PCDs Print a summary of a PCDs object

Description

Prints some information about the object.

Usage

S3 method for class 'summary.PCDs'
print(x, ...)

print.summary.Planes 459

Arguments

x An object of class "summary.PCDs", generated by summary.PCDs.

... Additional parameters for print.

Value

None

See Also

print.PCDs, summary.PCDs, and plot.PCDs

print.summary.Planes Print a summary of a Planes object

Description

Prints some information about the object.

Usage

S3 method for class 'summary.Planes'
print(x, ...)

Arguments

x An object of class "summary.Planes", generated by summary.Planes.

... Additional parameters for print.

Value

None

See Also

print.Planes, summary.Planes, and plot.Planes

460 print.summary.Uniform

print.summary.TriLines

Print a summary of a TriLines object

Description

Prints some information about the object

Usage

S3 method for class 'summary.TriLines'
print(x, ...)

Arguments

x An object of class "summary.TriLines", generated by summary.TriLines.

... Additional parameters for print.

Value

None

See Also

print.TriLines, summary.TriLines, and plot.TriLines

print.summary.Uniform Print a summary of a Uniform object

Description

Prints some information about the object.

Usage

S3 method for class 'summary.Uniform'
print(x, ...)

Arguments

x An object of class "summary.Uniform", generated by summary.Uniform.

... Additional parameters for print.

Value

None

print.TriLines 461

See Also

print.Uniform, summary.Uniform, and plot.Uniform

print.TriLines Print a TriLines object

Description

Prints the call of the object of class "TriLines" and also the coefficients of the line (in the
form: y = slope * x + intercept), and the vertices of the triangle with respect to which the line is
defined.

Usage

S3 method for class 'TriLines'
print(x, ...)

Arguments

x A TriLines object.
... Additional arguments for the S3 method 'print'.

Value

The call of the object of class "TriLines" , the coefficients of the line (in the form: y =
slope * x + intercept), and the vertices of the triangle with respect to which the line is defined.

See Also

summary.TriLines, print.summary.TriLines, and plot.TriLines

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
xfence<-abs(A[1]-B[1])*.25
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,l=3)

lnACM<-lineA2CMinTe(x)
lnACM
print(lnACM)

typeof(lnACM)
attributes(lnACM)

End(Not run)

462 print.Uniform

print.Uniform Print a Uniform object

Description

Prints the call of the object of class "Uniform" and also the type (i.e. a brief description) of the
uniform distribution).

Usage

S3 method for class 'Uniform'
print(x, ...)

Arguments

x A Uniform object.

... Additional arguments for the S3 method 'print'.

Value

The call of the object of class "Uniform" and also the type (i.e. a brief description) of the
uniform distribution).

See Also

summary.Uniform, print.summary.Uniform, and plot.Uniform

Examples

Not run:
n<-10 #try also 20, 100, and 1000
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C)

Xdt<-runif.tri(n,Tr)
Xdt
print(Xdt)

typeof(Xdt))
attributes(Xdt)

End(Not run)

prj.cent2edges 463

prj.cent2edges Projections of a point inside a triangle to its edges

Description

Returns the projections from a general center M = (m1,m2) in Cartesian coordinates or M =
(α, β, γ) in barycentric coordinates in the interior of a triangle to the edges on the extension of the
lines joining M to the vertices (see the examples for an illustration).

See also (Ceyhan (2005, 2010)).

Usage

prj.cent2edges(tri, M)

Arguments

tri A 3× 2 matrix with each row representing a vertex of the triangle.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri.

Value

Three projection points (stacked row-wise) from a general center M = (m1,m2) in Cartesian
coordinates or M = (α, β, γ) in barycentric coordinates in the interior of a triangle to the edges
on the extension of the lines joining M to the vertices; row i is the projection point into edge i, for
i = 1, 2, 3.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

prj.cent2edges.basic.tri and prj.nondegPEcent2edges

464 prj.cent2edges.basic.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

Ds<-prj.cent2edges(Tr,M) #try also prj.cent2edges(Tr,M=c(1,1))
Ds

Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates

plot(Tr,pch=".",xlab="",ylab="",
main="Projection of Center M on the edges of a triangle",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

xc<-Tr[,1]
yc<-Tr[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.04,-.02)
yc<-txt[,2]+c(-.02,.04,.04,-.06)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

prj.cent2edges.basic.tri

Projections of a point inside the standard basic triangle form to its
edges

Description

Returns the projections from a general center M = (m1,m2) in Cartesian coordinates or M =
(α, β, γ) in barycentric coordinates in the interior of the standard basic triangle form Tb = T ((0, 0), (1, 0), (c1, c2))
to the edges on the extension of the lines joining M to the vertices (see the examples for an illustra-
tion). In the standard basic triangle form Tb, c1 is in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

prj.cent2edges.basic.tri 465

Any given triangle can be mapped to the standard basic triangle form by a combination of rigid
body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the
points in the original triangle. Hence, standard basic triangle form is useful for simulation studies
under the uniformity hypothesis.

See also (Ceyhan (2005, 2010)).

Usage

prj.cent2edges.basic.tri(c1, c2, M)

Arguments

c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle
form adjacent to the shorter edges; c1 must be in [0, 1/2], c2 > 0 and (1−c1)

2+
c22 ≤ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard basic triangle form.

Value

Three projection points (stacked row-wise) from a general center M = (m1,m2) in Cartesian
coordinates or M = (α, β, γ) in barycentric coordinates in the interior of a standard basic triangle
form to the edges on the extension of the lines joining M to the vertices; row i is the projection point
into edge i, for i = 1, 2, 3.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

prj.cent2edges and prj.nondegPEcent2edges

Examples

Not run:
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)

466 prj.nondegPEcent2edges

Ds<-prj.cent2edges.basic.tri(c1,c2,M)
Ds

Xlim<-range(Tb[,1])
Ylim<-range(Tb[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

if (dimension(M)==3) {M<-bary2cart(M,Tb)}
#need to run this when M is given in barycentric coordinates

plot(Tb,pch=".",xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.1,.1),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
L<-rbind(M,M,M); R<-Tb
segments(L[,1], L[,2], R[,1], R[,2], lty = 3,col=2)

xc<-Tb[,1]+c(-.04,.05,.04)
yc<-Tb[,2]+c(.02,.02,.03)
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.03,-.03,0)
yc<-txt[,2]+c(-.02,.02,.02,-.03)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

prj.nondegPEcent2edges

Projections of Centers for non-degenerate asymptotic distribution of
domination number of Proportional Edge Proximity Catch Digraphs
(PE-PCDs) to its edges

Description

Returns the projections from center cent to the edges on the extension of the lines joining cent
to the vertices in the triangle, tri. Here M is one of the three centers which gives nondegenerate
asymptotic distribution of the domination number of PE-PCD for uniform data in tri for a given
expansion parameter r in (1, 1.5]. The center label cent values 1,2,3 correspond to the vertices
M1, M2, and M3 (i.e., row numbers in the output of center.nondegPE(tri,r)); default for cent
is 1. cent becomes center of mass CM for r = 1.5.

See also (Ceyhan (2005); Ceyhan and Priebe (2007); Ceyhan (2011)).

prj.nondegPEcent2edges 467

Usage

prj.nondegPEcent2edges(tri, r, cent = 1)

Arguments

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be in (1, 1.5] for this function.

cent Index of the center (as 1, 2, 3 corresponding to M1, M2, M3) which gives non-
degenerate asymptotic distribution of the domination number of PE-PCD for
uniform data in tri for expansion parameter r in (1, 1.5]; default cent=1.

Value

Three projection points (stacked row-wise) from one of the centers (as 1, 2, 3 corresponding to
M1, M2, M3) which gives nondegenerate asymptotic distribution of the domination number of
PE-PCD for uniform data in tri for expansion parameter r in (1, 1.5].

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE (2007). “On the Distribution of the Domination Number of a New Family
of Parametrized Random Digraphs.” Model Assisted Statistics and Applications, 1(4), 231-255.

See Also

prj.cent2edges.basic.tri and prj.cent2edges

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
r<-1.35

prj.nondegPEcent2edges(Tr,r,cent=2)

Ms<-center.nondegPE(Tr,r)
M1=Ms[1,]

468 radii

Ds<-prj.nondegPEcent2edges(Tr,r,cent=1)

Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,pch=".",xlab="",ylab="",
main="Projections from a non-degeneracy center\n to the edges of the triangle",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Ms,pch=".",col=1)
polygon(Ms,lty = 2)

xc<-Tr[,1]+c(-.02,.03,.02)
yc<-Tr[,2]+c(-.02,.04,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

txt<-Ms
xc<-txt[,1]+c(-.02,.04,-.04)
yc<-txt[,2]+c(-.02,.04,.04)
txt.str<-c("M1","M2","M3")
text(xc,yc,txt.str)

points(Ds,pch=4,col=2)
L<-rbind(M1,M1,M1); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2,lwd=2,col=4)
txt<-Ds
xc<-txt[,1]+c(-.02,.04,-.04)
yc<-txt[,2]+c(-.02,.04,.04)
txt.str<-c("D1","D2","D3")
text(xc,yc,txt.str)

prj.nondegPEcent2edges(Tr,r,cent=3)
#gives an error message if center index, cent, is different from 1, 2 or 3
prj.nondegPEcent2edges(Tr,r=1.49,cent=2)
#gives an error message if r>1.5

End(Not run)

radii The radii of points from one class with respect to points from the other
class

Description

Returns the radii of the balls centered at x points where radius of an x point equals to the minimum
distance to y points (i.e., distance to the closest y point). That is, for each x point radius =

radii 469

miny∈Y (d(x, y)). x and y points must be of the same dimension.

Usage

radii(x, y)

Arguments

x A set of d-dimensional points for which the radii are computed. Radius of an x
point equals to the distance to the closest y point.

y A set of d-dimensional points representing the reference points for the balls.
That is, radius of an x point is defined as the minimum distance to the y points.

Value

A list with three elements

rad A vector whose entries are the radius values for the x points. Radius of an x
point equals to the distance to the closest y point

index.of.clYp A vector of indices of the closest y points to the x points. The i-th entry in this
vector is the index of the closest y point to i-th x point.

closest.Yp A vector of the closest y points to the x points. The i-th entry in this vector or
i-th row in the matrix is the closest y point to i-th x point.

Author(s)

Elvan Ceyhan

See Also

radius

Examples

Not run:
nx<-10
ny<-5
X<-cbind(runif(nx),runif(nx))
Y<-cbind(runif(ny),runif(ny))
Rad<-radii(X,Y)
Rad
rd<-Rad$rad

Xlim<-range(X[,1]-rd,X[,1]+rd,Y[,1])
Ylim<-range(X[,2]-rd,X[,2]+rd,Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(rbind(Y),asp=1,pch=16,col=2,xlab="",ylab="",
main="Circles Centered at Class X Points with \n Radius Equal to the Distance to Closest Y Point",
axes=TRUE, xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))

470 radius

points(rbind(X))
interp::circles(X[,1],X[,2],Rad$rad,lty=1,lwd=1,col=4)

#For 1D data
nx<-10
ny<-5
Xm<-as.matrix(X)
Ym<-as.matrix(Y)
radii(Xm,Ym) #this works as Xm and Ym are treated as 1D data sets
#but will give error if radii(X,Y) is used
#as X and Y are treated as vectors (i.e., points)

#For 3D data
nx<-10
ny<-5
X<-cbind(runif(nx),runif(nx),runif(nx))
Y<-cbind(runif(ny),runif(ny),runif(ny))
radii(X,Y)

End(Not run)

radius The radius of a point from one class with respect to points from the
other class

Description

Returns the radius for the ball centered at point p with radius=min distance to Y points. That is, for
the point p radius = miny∈Y d(p, y) (i.e., distance from p to the closest Y point). The point p and
Y points must be of same dimension.

Usage

radius(p, Y)

Arguments

p A d-dimensional point for which radius is computed. Radius of p equals to the
distance to the closest Y point to p.

Y A set of d-dimensional points representing the reference points for the balls.
That is, radius of the point p is defined as the minimum distance to the Y points.

Value

A list with three elements

rad Radius value for the point, p defined as minyinY d(p, y)

index.of.clYpnt

Index of the closest Y points to the point p
closest.Ypnt The closest Y point to the point p

radius 471

Author(s)

Elvan Ceyhan

See Also

radii

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);

ny<-10
Y<-cbind(runif(ny),runif(ny))
radius(A,Y)

nx<-10
X<-cbind(runif(nx),runif(nx))
rad<-rep(0,nx)
for (i in 1:nx)
rad[i]<-radius(X[i,],Y)$rad

Xlim<-range(X[,1]-rad,X[,1]+rad,Y[,1])
Ylim<-range(X[,2]-rad,X[,2]+rad,Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(rbind(Y),asp=1,pch=16,col=2,xlab="",ylab="",
main="Circles Centered at Class X Points with \n Radius Equal to the Distance to Closest Y Point",
axes=TRUE, xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(rbind(X))
interp::circles(X[,1],X[,2],rad,lty=1,lwd=1,col=4)

#For 1D data
ny<-5
Y<-runif(ny)
Ym = as.matrix(Y)
radius(1,Ym) #this works as Y is treated as 1D data sets
#but will give error if radius(1,Y) is used
#as Y is treated as a vector (i.e., points)

#For 3D data
ny<-5
X<-runif(3)
Y<-cbind(runif(ny),runif(ny),runif(ny))
radius(X,Y)

End(Not run)

472 rassoc.circular

rassoc.circular Generation of points associated (in a radial or circular fashion) with
a given set of points

Description

An object of class "Patterns". Generates n 2D points uniformly in (a1−e, a1+e)× (a1−e, a1+
e) ∩ UiB(yi, e) (a1 and b1 are denoted as a1 and b1 as arguments) where Yp = (y1, y2, . . . , yny)
with ny being number of Yp points for various values of e under the association pattern and B(yi, e)
is the ball centered at yi with radius e.

e must be positive and very large values of e provide patterns close to CSR. a1 is defaulted to
the minimum of the x-coordinates of the Yp points, a2 is defaulted to the maximum of the x-
coordinates of the Yp points, b1 is defaulted to the minimum of the y-coordinates of the Yp points,
b2 is defaulted to the maximum of the y-coordinates of the Yp points. This function is also very
similar to rassoc.matern, where rassoc.circular needs the study window to be specified, while
rassoc.matern does not.

Usage

rassoc.circular(
n,
Yp,
e,
a1 = min(Yp[, 1]),
a2 = max(Yp[, 1]),
b1 = min(Yp[, 2]),
b2 = max(Yp[, 2])

)

Arguments

n A positive integer representing the number of points to be generated.

Yp A set of 2D points representing the reference points. The generated points are
associated (in a circular or radial fashion) with these points.

e A positive real number representing the radius of the balls centered at Yp points.
Only these balls are allowed for the generated points (i.e., generated points
would be in the union of these balls).

a1, a2 Real numbers representing the range of x-coordinates in the region (default is
the range of x-coordinates of the Yp points).

b1, b2 Real numbers representing the range of y-coordinates in the region (default is
the range of y-coordinates of the Yp points).

Value

A list with the elements

rassoc.circular 473

type The type of the point pattern

mtitle The "main" title for the plot of the point pattern

parameters Radial attraction parameter of the association pattern

ref.points The input set of attraction points Yp, i.e., points with which generated points are
associated.

gen.points The output set of generated points associated with Yp points

tri.Yp Logical output for triangulation based on Yp points should be implemented or
not. if TRUE triangulation based on Yp points is to be implemented (default is set
to FALSE).

desc.pat Description of the point pattern

num.points The vector of two numbers, which are the number of generated points and the
number of attraction (i.e., Yp) points.

xlimit, ylimit The possible range of the x- and y-coordinates of the generated points.

Author(s)

Elvan Ceyhan

See Also

rseg.circular, rassoc.std.tri, rassocII.std.tri, rassoc.matern, and rassoc.multi.tri

Examples

Not run:
nx<-100; ny<-4; #try also nx<-1000; ny<-10;

e<-.15;
#with default bounding box (i.e., unit square)
Y<-cbind(runif(ny),runif(ny))

Xdt<-rassoc.circular(nx,Y,e)
Xdt
summary(Xdt)
plot(Xdt,asp=1)

Xdt<-Xdt$gen.points
Xlim<-range(Xdt[,1],Y[,1]);
Ylim<-range(Xdt[,2],Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Y,asp=1,xlab="x",ylab="y",
main="Circular Association of X points with Y Points",

xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01),
pch=16,col=2,lwd=2)

points(Xdt)

#with default bounding box (i.e., unit square)

474 rassoc.matern

Xlim<-range(Xdt[,1],Y[,1]);
Ylim<-range(Xdt[,2],Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Y,asp=1,xlab="x",ylab="y",
main="Circular Association of X points with Y Points",

xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01),pch=16,
col=2,lwd=2)

points(Xdt)

#with a rectangular bounding box
a1<-0; a2<-10;
b1<-0; b2<-5;
e<-1.1; #try also e<-5; #pattern very close to CSR!

Y<-cbind(runif(ny,a1,a2),runif(ny,b1,b2))
#try also Y<-cbind(runif(ny,a1,a2/2),runif(ny,b1,b2/2))

Xdt<-rassoc.circular(nx,Y,e,a1,a2,b1,b2)$gen.points
Xlim<-range(Xdt[,1],Y[,1]);
Ylim<-range(Xdt[,2],Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Y,asp=1,xlab="x",ylab="y",
main="Circular Association of X points with Y Points",

xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01),
pch=16,col=2,lwd=2)

points(Xdt)

End(Not run)

rassoc.matern Generation of points associated (in a Matern-like fashion) to a given
set of points

Description

An object of class "Patterns". Generates n 2D points uniformly in ∪B(yi, e) where Yp =
(y1, y2, . . . , yny

) with ny being number of Yp points for various values of e under the association
pattern and B(yi, e) is the ball centered at yi with radius e.

The pattern resembles the Matern cluster pattern (see rMatClust in the spatstat.random package
for further information (Baddeley and Turner (2005)). rMatClust(kappa, scale, mu, win) in the
simplest case generates a uniform Poisson point process of "parent" points with intensity kappa.
Then each parent point is replaced by a random cluster of "offspring" points, the number of points
per cluster being Poisson(mu) distributed, and their positions being placed and uniformly inside a

rassoc.matern 475

disc of radius scale centered on the parent point. The resulting point pattern is a realization of the
classical "stationary Matern cluster process" generated inside the window win.

The main difference of rassoc.matern and rMatClust is that the parent points are Yp points which
are given beforehand and we do not discard them in the end in rassoc.matern and the offspring
points are the points associated with the reference points, Yp; e must be positive and very large
values of e provide patterns close to CSR.

This function is also very similar to rassoc.circular, where rassoc.circular needs the study
window to be specified, while rassoc.matern does not.

Usage

rassoc.matern(n, Yp, e)

Arguments

n A positive integer representing the number of points to be generated.

Yp A set of 2D points representing the reference points. The generated points are
associated (in a Matern-cluster like fashion) with these points.

e A positive real number representing the radius of the balls centered at Yp points.
Only these balls are allowed for the generated points (i.e., generated points
would be in the union of these balls).

Value

A list with the elements

type The type of the point pattern

mtitle The "main" title for the plot of the point pattern

parameters Radial (i.e., circular) attraction parameter of the association pattern.

ref.points The input set of attraction points Yp, i.e., points with which generated points are
associated.

gen.points The output set of generated points associated with Yp points.

tri.Yp Logical output for triangulation based on Yp points should be implemented or
not. if TRUE triangulation based on Yp points is to be implemented (default is set
to FALSE).

desc.pat Description of the point pattern

num.points The vector of two numbers, which are the number of generated points and the
number of attraction (i.e., Yp) points.

xlimit, ylimit The possible ranges of the x- and y-coordinates of the generated points.

Author(s)

Elvan Ceyhan

476 rassoc.matern

References

Baddeley AJ, Turner R (2005). “spatstat: An R Package for Analyzing Spatial Point Patterns.”
Journal of Statistical Software, 12(6), 1-42.

See Also

rassoc.circular, rassoc.std.tri, rassocII.std.tri, rassoc.multi.tri, rseg.circular,
and rMatClust in the spatstat.random package

Examples

Not run:
nx<-100; ny<-4; #try also nx<-1000; ny<-10;

e<-.15;
#try also e<-1.1; #closer to CSR than association, as e is large

#Y points uniform in unit square
Y<-cbind(runif(ny),runif(ny))

Xdt<-rassoc.matern(nx,Y,e)
Xdt
summary(Xdt)
plot(Xdt,asp=1)

Xdt<-Xdt$gen.points
Xlim<-range(Xdt[,1],Y[,1]);
Ylim<-range(Xdt[,2],Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Y,asp=1,xlab="x",ylab="y",
main="Matern-like Association of X points with Y Points",

xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01),
pch=16,col=2,lwd=2)

points(Xdt)

a1<-0; a2<-10;
b1<-0; b2<-5;
e<-1.1;

#Y points uniform in a rectangle
Y<-cbind(runif(ny,a1,a2),runif(ny,b1,b2))
#try also Y<-cbind(runif(ny,a1,a2/2),runif(ny,b1,b2/2))

Xdt<-rassoc.matern(nx,Y,e)$gen.points
Xlim<-range(Xdt[,1],Y[,1]);
Ylim<-range(Xdt[,2],Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Y,asp=1,xlab="x",ylab="y",

rassoc.multi.tri 477

main="Matern-like Association of X points with Y Points",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01),pch=16,col=2,lwd=2)

points(Xdt)

End(Not run)

rassoc.multi.tri Generation of points associated (in a Type I fashion) with a given set
of points

Description

An object of class "Patterns". Generates n points uniformly in the support for Type I association
in the convex hull of set of points, Yp. delta is the parameter of association (that is, only δ100 %
area around each vertex in each Delaunay triangle is allowed for point generation).

delta corresponds to eps in the standard equilateral triangle Te as delta = 4eps2/3 (see rseg.std.tri
function).

If Yp consists only of 3 points, then the function behaves like the function rassoc.tri.

DTmesh must be the Delaunay triangulation of Yp and DTr must be the corresponding Delaunay
triangles (both DTmesh and DTr are NULL by default). If NULL, DTmesh is computed via tri.mesh
and DTr is computed via triangles function in interp package.

tri.mesh function yields the triangulation nodes with their neighbours, and creates a triangulation
object, and triangles function yields a triangulation data structure from the triangulation object
created by tri.mesh (the first three columns are the vertex indices of the Delaunay triangles).

See (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)) for more on the association pattern.
Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation
and the corresponding algorithm.

Usage

rassoc.multi.tri(n, Yp, delta, DTmesh = NULL, DTr = NULL)

Arguments

n A positive integer representing the number of points to be generated.

Yp A set of 2D points from which Delaunay triangulation is constructed.

delta A positive real number in (0, 4/9). delta is the parameter of association (that
is, only δ100 % area around each vertex in each Delaunay triangle is allowed
for point generation).

DTmesh Delaunay triangulation of Yp, default is NULL, which is computed via tri.mesh
function in interp package. tri.mesh function yields the triangulation nodes
with their neighbours, and creates a triangulation object.

DTr Delaunay triangles based on Yp, default is NULL, which is computed via tri.mesh
function in interp package. triangles function yields a triangulation data
structure from the triangulation object created by tri.mesh.

478 rassoc.multi.tri

Value

A list with the elements

type The type of the pattern from which points are to be generated

mtitle The "main" title for the plot of the point pattern

parameters Attraction parameter, delta, of the Type I association pattern. delta is in
(0, 4/9) only δ100 % of the area around each vertex in each Delaunay trian-
gle is allowed for point generation.

ref.points The input set of points Yp; reference points, i.e., points with which generated
points are associated.

gen.points The output set of generated points associated with Yp points.

tri.Y Logical output, TRUE if triangulation based on Yp points should be implemented.

desc.pat Description of the point pattern

num.points The vector of two numbers, which are the number of generated points and the
number of reference (i.e., Yp) points.

xlimit, ylimit The ranges of the x- and y-coordinates of the reference points, which are the Yp
points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

rassoc.circular, rassoc.std.tri, rassocII.std.tri, and rseg.multi.tri

rassoc.std.tri 479

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-4; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Yp<-cbind(runif(ny),runif(ny))
del<-.4

Xdt<-rassoc.multi.tri(nx,Yp,del)
Xdt
summary(Xdt)
plot(Xdt)

#or use
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
#Delaunay triangulation based on Y points
TRY<-interp::triangles(DTY)[,1:3];
Xp<-rassoc.multi.tri(nx,Yp,del,DTY,TRY)$g
#data under CSR in the convex hull of Ypoints

Xlim<-range(Yp[,1])
Ylim<-range(Yp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

#plot of the data in the convex hull of Y points together with the Delaunay triangulation
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
#Delaunay triangulation based on Y points

plot(Xp,main="Points from Type I Association \n in Multipe Triangles",
xlab=" ", ylab=" ",xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05),type="n")
interp::plot.triSht(DTY, add=TRUE,
do.points=TRUE,col="blue")
points(Xp,pch=".",cex=3)

End(Not run)

rassoc.std.tri Generation of points associated (in a Type I fashion) with the vertices
of T_e

Description

An object of class "Patterns". Generates n points uniformly in the standard equilateral triangle
Te = T ((0, 0), (1, 0), (1/2,

√
3/2)) under the type I association alternative for eps in (0,

√
3/3 =

0.5773503]. The allowed triangular regions around the vertices are determined by the parameter
eps.

480 rassoc.std.tri

In the type I association, the triangular support regions around the vertices are determined by the
parameter eps where

√
3/3-eps serves as the height of these triangles (see examples for a sample

plot.)

See also (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)).

Usage

rassoc.std.tri(n, eps)

Arguments

n A positive integer representing the number of points to be generated.

eps A positive real number representing the parameter of type I association (where√
3/3-eps serves as the height of the triangular support regions around the ver-

tices).

Value

A list with the elements

type The type of the point pattern

mtitle The "main" title for the plot of the point pattern

parameters The attraction parameter of the association pattern, eps, where
√
3/3-eps serves

as the height of the triangular support regions around the vertices

ref.points The input set of points Y; reference points, i.e., points with which generated
points are associated (i.e., vertices of Te).

gen.points The output set of generated points associated with Y points (i.e., vertices of Te).

tri.Y Logical output for triangulation based on Y points should be implemented or
not. if TRUE triangulation based on Y points is to be implemented (default is set
to FALSE).

desc.pat Description of the point pattern.

num.points The vector of two numbers, which are the number of generated points and the
number of reference (i.e., Y) points.

xlimit, ylimit The ranges of the x- and y-coordinates of the reference points, which are the
vertices of Te here

Author(s)

Elvan Ceyhan

References

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random Di-
graph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

rassoc.std.tri 481

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

rseg.circular, rassoc.circular, rsegII.std.tri, and rseg.multi.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-100 #try also n<-20 or n<-100 or 1000
eps<-.25 #try also .15, .5, .75

set.seed(1)
Xdt<-rassoc.std.tri(n,eps)
Xdt
summary(Xdt)
plot(Xdt,asp=1)

Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

Xp<-Xdt$gen.points
plot(Te,pch=".",xlab="",ylab="",
main="Type I association in the \n standard equilateral triangle",

xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp)

#The support for the Type I association alternative
sr<-(sqrt(3)/3-eps)/(sqrt(3)/2)
C1<-C+sr*(A-C); C2<-C+sr*(B-C)
A1<-A+sr*(B-A); A2<-A+sr*(C-A)
B1<-B+sr*(A-B); B2<-B+sr*(C-B)
supp<-rbind(A1,B1,B2,C2,C1,A2)

plot(Te,asp=1,pch=".",xlab="",ylab="",
main="Support of the Type I Association",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
if (sr<=.5)
{

polygon(Te,col=5)
polygon(supp,col=0)

} else
{

polygon(Te,col=0,lwd=2.5)

482 rassoc.tri

polygon(rbind(A,A1,A2),col=5,border=NA)
polygon(rbind(B,B1,B2),col=5,border=NA)
polygon(rbind(C,C1,C2),col=5,border=NA)

}
points(Xp)

End(Not run)

rassoc.tri Generation of points associated (in a Type I fashion) with the vertices
of a triangle

Description

An object of class "Patterns". Generates n points uniformly in the support for Type I association
in a given triangle, tri. delta is the parameter of association (that is, only δ100 % area around
each vertex in the triangle is allowed for point generation). delta corresponds to eps in the standard
equilateral triangle Te as delta = 4eps2/3 (see rseg.std.tri function).

See (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)) for more on the association pattern.

Usage

rassoc.tri(n, tri, delta)

Arguments

n A positive integer representing the number of points to be generated from the
association pattern in the triangle, tri.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

delta A positive real number in (0, 4/9). delta is the parameter of association (that
is, only δ100 % area around each vertex in the triangle is allowed for point
generation).

Value

A list with the elements

type The type of the pattern from which points are to be generated

mtitle The "main" title for the plot of the point pattern

parameters Attraction parameter, delta, of the Type I association pattern. delta is in
(0, 4/9) only δ100 % of the area around each vertex in the triangle tri is al-
lowed for point generation.

ref.points The input set of points, i.e., vertices of tri; reference points, i.e., points with
which generated points are associated.

gen.points The output set of generated points associated with the vertices of tri.

rassoc.tri 483

tri.Y Logical output, TRUE if triangulation based on Yp points should be implemented.

desc.pat Description of the point pattern

num.points The vector of two numbers, which are the number of generated points and the
number of reference (i.e., Yp) points.

xlimit, ylimit The ranges of the x- and y-coordinates of the reference points, which are the Yp
points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random Di-
graph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

rseg.tri, rassoc.std.tri, rassocII.std.tri, and rassoc.multi.tri

Examples

Not run:
n<-100
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C)
del<-.4

Xdt<-rassoc.tri(n,Tr,del)
Xdt
summary(Xdt)
plot(Xdt)

Xp<-Xdt$g
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,pch=".",xlab="",ylab="",
main="Points from Type I Association \n in one Triangle",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)

484 rassocII.std.tri

points(Xp)
xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.03)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

End(Not run)

rassocII.std.tri Generation of points associated (in a Type II fashion) with the edges
of T_e

Description

An object of class "Patterns". Generates n points uniformly in the standard equilateral triangle
Te = T ((0, 0), (1, 0), (1/2,

√
3/2)) under the type II association alternative for eps in (0,

√
3/6 =

0.2886751].

In the type II association, the annular allowed regions around the edges are determined by the
parameter eps where

√
3/6-eps is the distance from the interior triangle (i.e., forbidden region for

association) to Te (see examples for a sample plot.)

Usage

rassocII.std.tri(n, eps)

Arguments

n A positive integer representing the number of points to be generated.

eps A positive real number representing the parameter of type II association (where√
3/6-eps is the distance from the interior triangle distance from the interior

triangle to Te).

Value

A list with the elements

type The type of the point pattern

mtitle The "main" title for the plot of the point pattern

parameters The attraction parameter, eps, of the association pattern, where
√
3/6-eps is the

distance from the interior triangle to Te

ref.points The input set of points Y; reference points, i.e., points with which generated
points are associated (i.e., vertices of Te).

gen.points The output set of generated points associated with Y points (i.e., edges of Te).

tri.Y Logical output for triangulation based on Y points should be implemented or
not. if TRUE triangulation based on Y points is to be implemented (default is set
to FALSE).

rassocII.std.tri 485

desc.pat Description of the point pattern

num.points The vector of two numbers, which are the number of generated points and the
number of reference (i.e., Y) points, which is 3 here.

xlimit, ylimit The ranges of the x- and y-coordinates of the reference points, which are the
vertices of Te here.

Author(s)

Elvan Ceyhan

See Also

rseg.circular, rassoc.circular, rsegII.std.tri, and rseg.multi.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-100 #try also n<-20 or n<-100 or 1000
eps<-.2 #try also .25, .1

set.seed(1)
Xdt<-rassocII.std.tri(n,eps)
Xdt
summary(Xdt)
plot(Xdt,asp=1)

Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

Xp<-Xdt$gen.points
plot(Te,pch=".",xlab="",ylab="",
main="Type II association in the \n standard equilateral triangle",

xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp)

#The support for the Type II association alternative
A1<-c(1/2-eps*sqrt(3),sqrt(3)/6-eps);
B1<-c(1/2+eps*sqrt(3),sqrt(3)/6-eps);
C1<-c(1/2,sqrt(3)/6+2*eps);
supp<-rbind(A1,B1,C1)

plot(Te,asp=1,pch=".",xlab="",ylab="",
main="Support of the Type II Association",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te,col=5)
polygon(supp,col=0)
points(Xp)

486 rel.edge.basic.tri

End(Not run)

rel.edge.basic.tri The index of the edge region in a standard basic triangle form that
contains a point

Description

Returns the index of the edge whose region contains point, p, in the standard basic triangle form
Tb = T (A = (0, 0), B = (1, 0), C = (c1, c2)) and edge regions based on center M = (m1,m2)
in Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of the standard
basic triangle form Tb.

Edges are labeled as 3 for edge AB, 1 for edge BC, and 2 for edge AC. If the point, p, is not inside
tri, then the function yields NA as output. Edge region 1 is the triangle T (B,C,M), edge region
2 is T (A,C,M), and edge region 3 is T (A,B,M). In the standard basic triangle form Tb c1 is in
[0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Any given triangle can be mapped to the standard basic triangle form by a combination of rigid
body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the
points in the original triangle. Hence, standard basic triangle form is useful for simulation studies
under the uniformity hypothesis.

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

rel.edge.basic.tri(p, c1, c2, M)

Arguments

p A 2D point for which M-edge region it resides in is to be determined in the
standard basic triangle form Tb.

c1, c2 Positive real numbers which constitute the upper vertex of the standard basic
triangle form (i.e., the vertex adjacent to the shorter edges of Tb); c1 must be in
[0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.
M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates

which serves as a center in the interior of the standard basic triangle form Tb.

Value

A list with three elements

re Index of the M-edge region that contains point, p in the standard basic triangle
form Tb.

tri The vertices of the triangle, where row labels are A, B, and C with edges are
labeled as 3 for edge AB, 1 for edge BC, and 2 for edge AC.

desc Description of the edge labels

rel.edge.basic.tri 487

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

rel.edge.triCM, rel.edge.tri, rel.edge.basic.tri, rel.edge.std.triCM, and edge.reg.triCM

Examples

Not run:
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);
M<-c(.6,.2)

P<-c(.4,.2)
rel.edge.basic.tri(P,c1,c2,M)

A<-c(0,0);B<-c(1,0);C<-c(c1,c2);
Tb<-rbind(A,B,C)

n<-20 #try also n<-40
Xp<-runif.basic.tri(n,c1,c2)$g

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)

re<-vector()
for (i in 1:n)

re<-c(re,rel.edge.basic.tri(Xp[i,],c1,c2,M)$re)
re

Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

488 rel.edge.basic.triCM

plot(Tb,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xp,pch=".")
polygon(Tb)
L<-Tb; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(re))

txt<-rbind(Tb,M)
xc<-txt[,1]+c(-.03,.03,.02,0)
yc<-txt[,2]+c(.02,.02,.02,-.03)
txt.str<-c("A","B","C","M")
text(xc,yc,txt.str)

End(Not run)

rel.edge.basic.triCM The index of the CM -edge region in a standard basic triangle form
that contains a point

Description

Returns the index of the edge whose region contains point, p, in the standard basic triangle form
Tb = T (A = (0, 0), B = (1, 0), C = (c1, c2) where c1 is in [0, 1/2], c2 > 0 and (1− c1)

2+ c22 ≤ 1
with edge regions based on center of mass CM = (A+B + C)/3.

Edges are labeled as 3 for edge AB, 1 for edge BC, and 2 for edge AC. If the point, p, is not inside
tri, then the function yields NA as output. Edge region 1 is the triangle T (B,C,CM), edge region
2 is T (A,C,CM), and edge region 3 is T (A,B,CM).

Any given triangle can be mapped to the standard basic triangle form by a combination of rigid
body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the
points in the original triangle. Hence, standard basic triangle form is useful for simulation studies
under the uniformity hypothesis.

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

rel.edge.basic.triCM(p, c1, c2)

Arguments

p A 2D point for which CM -edge region it resides in is to be determined in the
standard basic triangle form Tb.

c1, c2 Positive real numbers which constitute the upper vertex of the standard basic
triangle form (i.e., the vertex adjacent to the shorter edges of Tb); c1 must be in
[0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

rel.edge.basic.triCM 489

Value

A list with three elements

re Index of the CM -edge region that contains point, p in the standard basic triangle
form Tb

tri The vertices of the triangle, where row labels are A = (0, 0), B = (1, 0), and
C = (c1, c2) with edges are labeled as 3 for edge AB, 1 for edge BC, and 2 for
edge AC.

desc Description of the edge labels

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

rel.edge.triCM, rel.edge.tri, rel.edge.basic.tri, rel.edge.std.triCM, and edge.reg.triCM

Examples

Not run:
c1<-.4; c2<-.6
P<-c(.4,.2)
rel.edge.basic.triCM(P,c1,c2)

A<-c(0,0);B<-c(1,0);C<-c(c1,c2);
Tb<-rbind(A,B,C)
CM<-(A+B+C)/3

rel.edge.basic.triCM(A,c1,c2)
rel.edge.basic.triCM(B,c1,c2)
rel.edge.basic.triCM(C,c1,c2)
rel.edge.basic.triCM(CM,c1,c2)

490 rel.edge.std.triCM

n<-20 #try also n<-40
Xp<-runif.basic.tri(n,c1,c2)$g

re<-vector()
for (i in 1:n)

re<-c(re,rel.edge.basic.triCM(Xp[i,],c1,c2)$re)
re

Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tb,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xp,pch=".")
polygon(Tb)
L<-Tb; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(re))

txt<-rbind(Tb,CM)
xc<-txt[,1]+c(-.03,.03,.02,0)
yc<-txt[,2]+c(.02,.02,.02,-.04)
txt.str<-c("A","B","C","CM")
text(xc,yc,txt.str)

End(Not run)

rel.edge.std.triCM The index of the edge region in the standard equilateral triangle that
contains a point

Description

Returns the index of the edge whose region contains point, p, in the standard equilateral triangle
Te = T (A = (0, 0), B = (1, 0), C = (1/2,

√
3/2)) with edge regions based on center of mass

CM = (A+B + C)/3.

Edges are labeled as 3 for edge AB, 1 for edge BC, and 2 for edge AC. If the point, p, is not inside
tri, then the function yields NA as output. Edge region 1 is the triangle T (B,C,M), edge region 2
is T (A,C,M), and edge region 3 is T (A,B,M).

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

rel.edge.std.triCM(p)

rel.edge.std.triCM 491

Arguments

p A 2D point for which CM -edge region it resides in is to be determined in the
the standard equilateral triangle Te.

Value

A list with three elements

re Index of the CM -edge region that contains point, p in the standard equilateral
triangle Te

tri The vertices of the standard equilateral triangle Te, where row labels are A, B,
and C with edges are labeled as 3 for edge AB, 1 for edge BC, and 2 for edge
AC.

desc Description of the edge labels

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

rel.edge.triCM, rel.edge.tri, rel.edge.basic.triCM, rel.edge.basic.tri, and edge.reg.triCM

Examples

Not run:
P<-c(.4,.2)
rel.edge.std.triCM(P)

A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
CM<-(A+B+C)/3

492 rel.edge.tri

n<-20 #try also n<-40
Xp<-runif.std.tri(n)$gen.points

re<-vector()
for (i in 1:n)

re<-c(re,rel.edge.std.triCM(Xp[i,])$re)
re

Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Te,asp=1,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
points(Xp,pch=".")
polygon(Te)
L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(re))

txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.03,.03,.03,-.06)
yc<-txt[,2]+c(.02,.02,.02,.03)
txt.str<-c("A","B","C","CM")
text(xc,yc,txt.str)

p1<-(A+B+CM)/3
p2<-(B+C+CM)/3
p3<-(A+C+CM)/3

plot(Te,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
L<-Te; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

txt<-rbind(Te,CM,p1,p2,p3)
xc<-txt[,1]+c(-.03,.03,.03,-.06,0,0,0)
yc<-txt[,2]+c(.02,.02,.02,.03,0,0,0)
txt.str<-c("A","B","C","CM","re=3","re=1","re=2")
text(xc,yc,txt.str)

End(Not run)

rel.edge.tri The index of the edge region in a triangle that contains the point

Description

Returns the index of the edge whose region contains point, p, in the triangle tri= T (A,B,C)
with edge regions based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ) in

rel.edge.tri 493

barycentric coordinates in the interior of the triangle tri.

Edges are labeled as 3 for edge AB, 1 for edge BC, and 2 for edge AC. If the point, p, is not inside
tri, then the function yields NA as output. Edge region 1 is the triangle T (B,C,M), edge region 2
is T (A,C,M), and edge region 3 is T (A,B,M).

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

rel.edge.tri(p, tri, M)

Arguments

p A 2D point for which M-edge region it resides in is to be determined in the
triangle tri.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri.

Value

A list with three elements

re Index of the M-edge region that contains point, p in the triangle tri.

tri The vertices of the triangle, where row labels are A, B, and C with edges are
labeled as 3 for edge AB, 1 for edge BC, and 2 for edge AC.

desc Description of the edge labels

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

494 rel.edge.tri

See Also

rel.edge.triCM, rel.edge.basic.triCM, rel.edge.basic.tri, rel.edge.std.triCM, and edge.reg.triCM

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

P<-c(1.4,1.2)
M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

rel.edge.tri(P,Tr,M)

n<-20 #try also n<-40
Xp<-runif.tri(n,Tr)$g

re<-vector()
for (i in 1:n)

re<-c(re,rel.edge.tri(Xp[i,],Tr,M)$re)
re

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

if (dimension(M)==3) {M<-bary2cart(M,Tr)}

plot(Tr,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".")
L<-Tr; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(re))

txt<-rbind(Tr,M)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("A","B","C","M")
text(xc,yc,txt.str)

p1<-(A+B+M)/3
p2<-(B+C+M)/3
p3<-(A+C+M)/3

plot(Tr,xlab="",ylab="", main="Illustration of M-edge regions in a triangle",
axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-Tr; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

rel.edge.triCM 495

txt<-rbind(Tr,M,p1,p2,p3)
xc<-txt[,1]+c(-.02,.02,.02,.02,.02,.02,.02)
yc<-txt[,2]+c(.02,.02,.04,.05,.02,.02,.02)
txt.str<-c("A","B","C","M","re=3","re=1","re=2")
text(xc,yc,txt.str)

End(Not run)

rel.edge.triCM The index of the CM -edge region in a triangle that contains the point

Description

Returns the index of the edge whose region contains point, p, in the triangle tri= T (A,B,C) with
edge regions based on center of mass CM = (A+B + C)/3.

Edges are labeled as 3 for edge AB, 1 for edge BC, and 2 for edge AC. If the point, p, is not inside
tri, then the function yields NA as output. Edge region 1 is the triangle T (B,C,CM), edge region
2 is T (A,C,CM), and edge region 3 is T (A,B,CM).

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

rel.edge.triCM(p, tri)

Arguments

p A 2D point for which CM -edge region it resides in is to be determined in the
triangle tri.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

A list with three elements

re Index of the CM -edge region that contains point, p in the triangle tri.

tri The vertices of the triangle, where row labels are A, B, and C with edges are
labeled as 3 for edge AB, 1 for edge BC, and 2 for edge AC.

desc Description of the edge labels

Author(s)

Elvan Ceyhan

496 rel.edge.triCM

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

rel.edge.tri, rel.edge.basic.triCM, rel.edge.basic.tri, rel.edge.std.triCM, and edge.reg.triCM

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
P<-c(1.4,1.2)
rel.edge.triCM(P,Tr)

P<-c(1.5,1.61)
rel.edge.triCM(P,Tr)

CM<-(A+B+C)/3

n<-20 #try also n<-40
Xp<-runif.tri(n,Tr)$g

re<-vector()
for (i in 1:n)

re<-c(re,rel.edge.triCM(Xp[i,],Tr)$re)
re

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xp,pch=".")
polygon(Tr)
L<-Tr; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(re))

rel.edges.tri 497

txt<-rbind(Tr,CM)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("A","B","C","CM")
text(xc,yc,txt.str)

p1<-(A+B+CM)/3
p2<-(B+C+CM)/3
p3<-(A+C+CM)/3

plot(Tr,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-Tr; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

txt<-rbind(Tr,CM,p1,p2,p3)
xc<-txt[,1]+c(-.02,.02,.02,.02,.02,.02,.02)
yc<-txt[,2]+c(.02,.02,.04,.05,.02,.02,.02)
txt.str<-c("A","B","C","CM","re=3","re=1","re=2")
text(xc,yc,txt.str)

End(Not run)

rel.edges.tri The indices of the M-edge regions in a triangle that contains the points
in a give data set

Description

Returns the indices of the edges whose regions contain the points in data set Xp in a triangle tri=
T (A,B,C) and edge regions are based on the center M = (m1,m2) in Cartesian coordinates or
M = (α, β, γ) in barycentric coordinates in the interior of the triangle tri (see the plots in the
example for illustrations).

The vertices of the triangle tri are labeled as 1 = A, 2 = B, and 3 = C also according to the
row number the vertex is recorded in tri and the corresponding edges are 1 = BC, 2 = AC, and
3 = AB.

If a point in Xp is not inside tri, then the function yields NA as output for that entry. The corre-
sponding edge region is the polygon with the vertex, M, and vertices other than the non-adjacent
vertex, i.e., edge region 1 is the triangle T (B,M,C), edge region 2 is T (A,M,C) and edge region
3 is T (A,B,M).

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

rel.edges.tri(Xp, tri, M)

498 rel.edges.tri

Arguments

Xp A set of 2D points representing the set of data points for which indices of the
edge regions containing them are to be determined.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri.

Value

A list with the elements

re Indices (i.e., a vector of indices) of the edges whose region contains points in
Xp in the triangle tri

tri The vertices of the triangle, where row number corresponds to the vertex index
opposite to edge whose index is given in re.

desc Description of the edge labels as "Edge labels are AB=3, BC=1, and AC=2".

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

rel.edges.triCM, rel.verts.tri, and rel.verts.tri.nondegPE

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

M<-c(1.6,1.2)

rel.edges.triCM 499

P<-c(.4,.2)
rel.edges.tri(P,Tr,M)

n<-20 #try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.2)

(re<-rel.edges.tri(Xp,Tr,M))

D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates

plot(Tr,pch=".",xlab="",ylab="",
main="Scatterplot of data points \n and the M-edge regions",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-Tr; R<-rbind(M,M,M)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

xc<-Tr[,1]+c(-.02,.03,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

txt<-rbind(M,Ds)
xc<-txt[,1]+c(.05,.06,-.05,-.02)
yc<-txt[,2]+c(.03,.03,.05,-.08)
txt.str<-c("M","re=2","re=3","re=1")
text(xc,yc,txt.str)
text(Xp,labels=factor(re$re))

End(Not run)

rel.edges.triCM The indices of the CM -edge regions in a triangle that contains the
points in a give data set

500 rel.edges.triCM

Description

Returns the indices of the edges whose regions contain the points in data set Xp in a triangle tri=
(A,B,C) and edge regions are based on the center of mass CM of tri. (see the plots in the
example for illustrations).

The vertices of the triangle tri are labeled as 1 = A, 2 = B, and 3 = C also according to the
row number the vertex is recorded in tri and the corresponding edges are 1 = BC, 2 = AC, and
3 = AB.

If a point in Xp is not inside tri, then the function yields NA as output for that entry. The corre-
sponding edge region is the polygon with the vertex, CM , and vertices other than the non-adjacent
vertex, i.e., edge region 1 is the triangle T (B,CM,C), edge region 2 is T (A,CM,C) and edge
region 3 is T (A,B,CM).

See also (Ceyhan (2005, 2010); Ceyhan et al. (2007)).

Usage

rel.edges.triCM(Xp, tri)

Arguments

Xp A set of 2D points representing the set of data points for which indices of the
edge regions containing them are to be determined.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

A list with the elements

re Indices (i.e., a vector of indices) of the edges whose region contains points in
Xp in the triangle tri

tri The vertices of the triangle, where row number corresponds to the vertex index
in rv.

desc Description of the edge labels as "Edge labels are AB=3, BC=1, and AC=2".

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number

rel.edges.triCM 501

of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

See Also

rel.edges.tri, rel.verts.tri, and rel.verts.tri.nondegPE

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

P<-c(.4,.2)
rel.edges.triCM(P,Tr)

n<-20 #try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g

re<-rel.edges.triCM(Xp,Tr)
re
CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-Tr; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

xc<-Tr[,1]+c(-.02,.03,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

txt<-rbind(CM,Ds)
xc<-txt[,1]+c(.05,.06,-.05,-.02)
yc<-txt[,2]+c(.03,.03,.05,-.08)
txt.str<-c("CM","re=2","re=3","re=1")
text(xc,yc,txt.str)
text(Xp,labels=factor(re$re))

502 rel.vert.basic.tri

End(Not run)

rel.vert.basic.tri The index of the vertex region in a standard basic triangle form that
contains a given point

Description

Returns the index of the related vertex in the standard basic triangle form whose region contains
point p. The standard basic triangle form is Tb = T ((0, 0), (1, 0), (c1, c2)) where c1 is in [0, 1/2],
c2 > 0 and (1− c1)

2 + c22 ≤ 1..

Vertex regions are based on the general center M = (m1,m2) in Cartesian coordinates or M =
(α, β, γ) in barycentric coordinates in the interior of the standard basic triangle form Tb. Vertices of
the standard basic triangle form Tb are labeled according to the row number the vertex is recorded,
i.e., as 1=(0,0), 2=(1,0),and 3 = (c1, c2).

If the point, p, is not inside Tb, then the function yields NA as output. The corresponding vertex
region is the polygon with the vertex, M, and projections from M to the edges on the lines joining
vertices and M. That is, rv=1 has vertices (0, 0), D3,M,D2; rv=2 has vertices (1, 0), D1,M,D3;
and rv = 3 has vertices (c1, c2), D2,M,D1 (see the illustration in the examples).

Any given triangle can be mapped to the standard basic triangle form by a combination of rigid
body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the
points in the original triangle. Hence, standard basic triangle form is useful for simulation studies
under the uniformity hypothesis.

See also (Ceyhan (2005, 2010)).

Usage

rel.vert.basic.tri(p, c1, c2, M)

Arguments

p A 2D point for which M-vertex region it resides in is to be determined in the
standard basic triangle form Tb.

c1, c2 Positive real numbers which constitute the vertex of the standard basic triangle
form adjacent to the shorter edges; c1 must be in [0, 1/2], c2 > 0 and (1−c1)

2+
c22 ≤ 1.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard basic triangle form.

Value

A list with two elements

rv Index of the vertex whose region contains point, p; index of the vertex is the
same as the row number in the standard basic triangle form, Tb

rel.vert.basic.tri 503

tri The vertices of the standard basic triangle form, Tb, where row number cor-
responds to the vertex index rv with rv=1 is row 1 = (0, 0), rv=2 is row
2 = (1, 0), and rv = 3 is row 3 = (c1, c2).

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.vert.basic.triCM, rel.vert.tri, rel.vert.triCC, rel.vert.basic.triCC, rel.vert.triCM,
and rel.vert.std.triCM

Examples

Not run:
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);
M<-c(.6,.2)

P<-c(.4,.2)
rel.vert.basic.tri(P,c1,c2,M)

n<-20 #try also n<-40
set.seed(1)
Xp<-runif.basic.tri(n,c1,c2)$g

M<-as.numeric(runif.basic.tri(1,c1,c2)$g) #try also M<-c(.6,.2)

Rv<-vector()
for (i in 1:n)
{ Rv<-c(Rv,rel.vert.basic.tri(Xp[i,],c1,c2,M)$rv)}
Rv

Ds<-prj.cent2edges.basic.tri(c1,c2,M)

Xlim<-range(Tb[,1],Xp[,1])

504 rel.vert.basic.triCC

Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

if (dimension(M)==3) {M<-bary2cart(M,Tb)}
#need to run this when M is given in barycentric coordinates

plot(Tb,pch=".",xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.1,.1),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

xc<-Tb[,1]+c(-.04,.05,.04)
yc<-Tb[,2]+c(.02,.02,.03)
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.03,0)
yc<-txt[,2]+c(-.02,.02,.02,-.03)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(Rv))

End(Not run)

rel.vert.basic.triCC The index of the CC-vertex region in a standard basic triangle form
that contains a point

Description

Returns the index of the vertex whose region contains point p in the standard basic triangle form
Tb = T ((0, 0), (1, 0), (c1, c2)) where c1 is in [0, 1/2], c2 > 0 and (1 − c1)

2 + c22 ≤ 1 and vertex
regions are based on the circumcenter CC of Tb. (see the plots in the example for illustrations).

The vertices of the standard basic triangle form Tb are labeled as 1 = (0, 0), 2 = (1, 0),and 3 =
(c1, c2) also according to the row number the vertex is recorded in Tb. If the point, p, is not inside
Tb, then the function yields NA as output. The corresponding vertex region is the polygon whose
interior points are closest to that vertex.

Any given triangle can be mapped to the standard basic triangle form by a combination of rigid
body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the
points in the original triangle. Hence, standard basic triangle form is useful for simulation studies
under the uniformity hypothesis.

See also (Ceyhan (2005, 2010)).

rel.vert.basic.triCC 505

Usage

rel.vert.basic.triCC(p, c1, c2)

Arguments

p A 2D point for which CC-vertex region it resides in is to be determined in the
standard basic triangle form Tb.

c1, c2 Positive real numbers which constitute the upper vertex of the standard basic
triangle form (i.e., the vertex adjacent to the shorter edges of Tb); c1 must be in
[0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Value

A list with two elements

rv Index of the CC-vertex region that contains point, p in the standard basic trian-
gle form Tb

tri The vertices of the triangle, where row number corresponds to the vertex index
in rv with row 1 = (0, 0), row 2 = (1, 0), and row 3 = (c1, c2).

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.vert.triCM, rel.vert.tri, rel.vert.triCC, rel.vert.basic.triCM, rel.vert.basic.tri,
and rel.vert.std.triCM

Examples

Not run:
c1<-.4; c2<-.6; #try also c1<-.5; c2<-.5;

P<-c(.3,.2)
rel.vert.basic.triCC(P,c1,c2)

506 rel.vert.basic.triCC

A<-c(0,0);B<-c(1,0);C<-c(c1,c2);
Tb<-rbind(A,B,C)
CC<-circumcenter.basic.tri(c1,c2) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tb[,1])
Ylim<-range(Tb[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tb,asp=1,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

txt<-rbind(Tb,CC,Ds)
xc<-txt[,1]+c(-.03,.03,0.02,-.01,.05,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,.06,.03,.03,-.03)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

RV1<-(A+D3+CC+D2)/4
RV2<-(B+D3+CC+D1)/4
RV3<-(C+D2+CC+D1)/4

txt<-rbind(RV1,RV2,RV3)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

n<-20 #try also n<-40
Xp<-runif.basic.tri(n,c1,c2)$g

Rv<-vector()
for (i in 1:n)

Rv<-c(Rv,rel.vert.basic.triCC(Xp[i,],c1,c2)$rv)
Rv

Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tb,asp=1,xlab="",pch=".",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xp,pch=".")
polygon(Tb)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(Rv))

rel.vert.basic.triCM 507

txt<-rbind(Tb,CC,Ds)
xc<-txt[,1]+c(-.03,.03,0.02,-.01,.05,-.05,.01)
yc<-txt[,2]+c(.02,.02,.03,.06,.03,.03,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

rel.vert.basic.triCM The index of the CM -vertex region in a standard basic triangle form
that contains a point

Description

Returns the index of the vertex whose region contains point p in the standard basic triangle form
Tb = T ((0, 0), (1, 0), (c1, c2)) where c1 is in [0, 1/2], c2 > 0 and (1 − c1)

2 + c22 ≤ 1 and vertex
regions are based on the center of mass CM=((1+c1)/3,c2/3) of Tb. (see the plots in the example for
illustrations).

The vertices of the standard basic triangle form Tb are labeled as 1 = (0, 0), 2 = (1, 0),and 3 =
(c1, c2) also according to the row number the vertex is recorded in Tb. If the point, p, is not inside
Tb, then the function yields NA as output. The corresponding vertex region is the polygon with the
vertex, CM , and midpoints of the edges adjacent to the vertex.

Any given triangle can be mapped to the standard basic triangle form by a combination of rigid
body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the
points in the original triangle. Hence, standard basic triangle form is useful for simulation studies
under the uniformity hypothesis.

See also (Ceyhan (2005, 2010); Ceyhan et al. (2006))

Usage

rel.vert.basic.triCM(p, c1, c2)

Arguments

p A 2D point for which CM -vertex region it resides in is to be determined in the
standard basic triangle form Tb.

c1, c2 Positive real numbers which constitute the upper vertex of the standard basic
triangle form (i.e., the vertex adjacent to the shorter edges of Tb); c1 must be in
[0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Value

A list with two elements

rv Index of the CM -vertex region that contains point, p in the standard basic trian-
gle form Tb

tri The vertices of the triangle, where row number corresponds to the vertex index
in rv with row 1 = (0, 0), row 2 = (1, 0), and row 3 = (c1, c2).

508 rel.vert.basic.triCM

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

#’ @author Elvan Ceyhan

See Also

rel.vert.triCM, rel.vert.tri, rel.vert.triCC, rel.vert.basic.triCC, rel.vert.basic.tri,
and rel.vert.std.triCM

Examples

Not run:
c1<-.4; c2<-.6
P<-c(.4,.2)
rel.vert.basic.triCM(P,c1,c2)

A<-c(0,0);B<-c(1,0);C<-c(c1,c2);
Tb<-rbind(A,B,C)
CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

n<-20 #try also n<-40
Xp<-runif.basic.tri(n,c1,c2)$g

Rv<-vector()
for (i in 1:n)

Rv<-c(Rv,rel.vert.basic.triCM(Xp[i,],c1,c2)$rv)
Rv

Xlim<-range(Tb[,1],Xp[,1])
Ylim<-range(Tb[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tb,xlab="",ylab="",axes="T",pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
points(Xp,pch=".")

rel.vert.end.int 509

polygon(Tb)
L<-Ds; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(Rv))

txt<-rbind(Tb,CM,Ds)
xc<-txt[,1]+c(-.03,.03,.02,-.01,.06,-.05,.0)
yc<-txt[,2]+c(.02,.02,.02,.04,.02,.02,-.03)
txt.str<-c("A","B","C","CM","D1","D2","D3")
text(xc,yc,txt.str)

plot(Tb,xlab="",ylab="",axes="T",pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tb)
L<-Ds; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

RV1<-(A+D3+CM+D2)/4
RV2<-(B+D3+CM+D1)/4
RV3<-(C+D2+CM+D1)/4

txt<-rbind(RV1,RV2,RV3)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

txt<-rbind(Tb,CM,Ds)
xc<-txt[,1]+c(-.03,.03,.02,-.01,.04,-.03,.0)
yc<-txt[,2]+c(.02,.02,.02,.04,.02,.02,-.03)
txt.str<-c("A","B","C","CM","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

rel.vert.end.int The index of the vertex region in an end-interval that contains a given
point

Description

Returns the index of the vertex in the interval, int, whose end interval contains the 1D point p, that
is, it finds the index of the vertex for the point, p, outside the interval int= (a, b) =(vertex 1,vertex
2); vertices of interval are labeled as 1 and 2 according to their order in the interval.

If the point, p, is inside int, then the function yields NA as output. The corresponding vertex region
is an interval as (−∞, a) or (b,∞) for the interval (a, b). Then if p < a, then rv=1 and if p > b, then
rv=2. Unlike rel.vert.mid.int, centrality parameter (i.e., center of the interval is not relevant
for rel.vert.end.int.)

See also (Ceyhan (2012, 2016)).

510 rel.vert.end.int

Usage

rel.vert.end.int(p, int)

Arguments

p A 1D point whose end interval region is provided by the function.

int A vector of two real numbers representing an interval.

Value

A list with two elements

rv Index of the end vertex whose region contains point, p.

int The vertices of the interval as a vector where position of the vertex corresponds
to the vertex index as int=(rv=1,rv=2).

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch Di-
graph Based on Uniform Data.” Metrika, 75(6), 761-793.

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

rel.vert.mid.int

Examples

Not run:
a<-0; b<-10; int<-c(a,b)

rel.vert.end.int(-6,int)
rel.vert.end.int(16,int)

n<-10
xf<-(int[2]-int[1])*.5
XpL<-runif(n,a-xf,a)
XpR<-runif(n,b,b+xf)
Xp<-c(XpL,XpR)
rel.vert.end.int(Xp[1],int)

Rv<-vector()
for (i in 1:length(Xp))

Rv<-c(Rv,rel.vert.end.int(Xp[i],int)$rv)

rel.vert.mid.int 511

Rv

Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]

plot(cbind(a,0),xlab="",pch=".",xlim=Xlim+xd*c(-.05,.05))
abline(h=0)
abline(v=c(a,b),col=1,lty = 2)
points(cbind(Xp,0))
text(cbind(Xp,0.1),labels=factor(Rv))
text(cbind(c(a,b),-0.1),c("rv=1","rv=2"))

jit<-.1
yjit<-runif(length(Xp),-jit,jit)

Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]

plot(cbind(a,0),
main="vertex region indices for the points\n in the end intervals",

xlab=" ", ylab=" ",pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=3*range(yjit))
points(Xp, yjit,xlim=Xlim+xd*c(-.05,.05),pch=".",cex=3)
abline(h=0)
abline(v=c(a,b),lty = 2)
text(Xp,yjit,labels=factor(Rv))
text(cbind(c(a,b),-.01),c("rv=1","rv=2"))

End(Not run)

rel.vert.mid.int The index of the vertex region in a middle interval that contains a given
point

Description

Returns the index of the vertex whose region contains point p in the interval int= (a, b) =(vertex
1,vertex 2) with (parameterized) center Mc associated with the centrality parameter c ∈ (0, 1);
vertices of interval are labeled as 1 and 2 according to their order in the interval int. If the point,
p, is not inside int, then the function yields NA as output. The corresponding vertex region is the
interval (a, b) as (a,Mc) and (Mc, b) where Mc = a+ c(b− a).

See also (Ceyhan (2012, 2016)).

Usage

rel.vert.mid.int(p, int, c = 0.5)

512 rel.vert.mid.int

Arguments

p A 1D point. The vertex region p resides is to be found.

int A vector of two real numbers representing an interval.

c A positive real number in (0, 1) parameterizing the center inside int= (a, b)
with the default c=.5. For the interval, int= (a, b), the parameterized center is
Mc = a+ c(b− a).

Value

A list with two elements

rv Index of the vertex in the interval int whose region contains point, p.

int The vertices of the interval as a vector where position of the vertex corresponds
to the vertex index as int=(rv=1,rv=2).

Author(s)

Elvan Ceyhan

References

Ceyhan E (2012). “The Distribution of the Relative Arc Density of a Family of Interval Catch Di-
graph Based on Uniform Data.” Metrika, 75(6), 761-793.

Ceyhan E (2016). “Density of a Random Interval Catch Digraph Family and its Use for Testing
Uniformity.” REVSTAT, 14(4), 349-394.

See Also

rel.vert.end.int

Examples

Not run:
c<-.4
a<-0; b<-10; int = c(a,b)

Mc<-centerMc(int,c)

rel.vert.mid.int(6,int,c)

n<-20 #try also n<-40
xr<-range(a,b,Mc)
xf<-(int[2]-int[1])*.5
Xp<-runif(n,a,b)

Rv<-vector()
for (i in 1:n)

Rv<-c(Rv,rel.vert.mid.int(Xp[i],int,c)$rv)
Rv

rel.vert.std.tri 513

jit<-.1
yjit<-runif(n,-jit,jit)

Xlim<-range(a,b,Xp)
xd<-Xlim[2]-Xlim[1]

plot(cbind(Mc,0),main="vertex region indices for the points", xlab=" ",
ylab=" ", xlim=Xlim+xd*c(-.05,.05),ylim=3*range(yjit),pch=".",cex=3)
abline(h=0)
points(Xp,yjit)
abline(v=c(a,b,Mc),lty = 2,col=c(1,1,2))
text(Xp,yjit,labels=factor(Rv))
text(cbind(c(a,b,Mc),.02),c("rv=1","rv=2","Mc"))

End(Not run)

rel.vert.std.tri The index of the vertex region in the standard equilateral triangle that
contains a given point

Description

Returns the index of the vertex whose region contains point p in standard equilateral triangle Te =
T ((0, 0), (1, 0), (1/2,

√
3/2)) with vertex regions are constructed with center M = (m1,m2) in

Cartesian coordinates or M = (α, β, γ) in barycentric coordinates in the interior of Te. (see the
plots in the example for illustrations).

The vertices of triangle, Te, are labeled as 1, 2, 3 according to the row number the vertex is recorded
in Te. If the point, p, is not inside Te, then the function yields NA as output. The corresponding
vertex region is the polygon with the vertex, M, and projections from M to the edges on the lines
joining vertices and M.

See also (Ceyhan (2005, 2010)).

Usage

rel.vert.std.tri(p, M)

Arguments

p A 2D point for which M-vertex region it resides in is to be determined in the
standard equilateral triangle Te.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the standard equilateral triangle Te.

514 rel.vert.std.tri

Value

A list with two elements

rv Index of the vertex whose region contains point, p.

tri The vertices of the triangle, Te, where row number corresponds to the vertex
index in rv with row 1 = (0, 0), row 2 = (1, 0), and row 3 = (1/2,

√
3/2).

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.vert.std.triCM, rel.vert.tri, rel.vert.triCC, rel.vert.basic.triCC, rel.vert.triCM,
and rel.vert.basic.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
n<-20 #try also n<-40

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

M<-as.numeric(runif.std.tri(1)$g) #try also M<-c(.6,.2)

rel.vert.std.tri(Xp[1,],M)

Rv<-vector()
for (i in 1:n)

Rv<-c(Rv,rel.vert.std.tri(Xp[i,],M)$rv)
Rv

Ds<-prj.cent2edges(Te,M)

rel.vert.std.triCM 515

Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

if (dimension(M)==3) {M<-bary2cart(M,Te)}
#need to run this when M is given in barycentric coordinates

plot(Te,asp=1,pch=".",xlab="",ylab="",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

txt<-rbind(Te,M)
xc<-txt[,1]+c(-.02,.03,.02,0)
yc<-txt[,2]+c(.02,.02,.03,.05)
txt.str<-c("A","B","C","M")
text(xc,yc,txt.str)
text(Xp,labels=factor(Rv))

End(Not run)

rel.vert.std.triCM The index of the CM -vertex region in the standard equilateral triangle
that contains a given point

Description

Returns the index of the vertex whose region contains point p in standard equilateral triangle Te =
T ((0, 0), (1, 0), (1/2,

√
3/2)) with vertex regions are constructed with center of mass CM (see the

plots in the example for illustrations).

The vertices of triangle, Te, are labeled as 1, 2, 3 according to the row number the vertex is recorded
in Te. If the point, p, is not inside Te, then the function yields NA as output. The corresponding vertex
region is the polygon with the vertex, CM , and midpoints of the edges adjacent to the vertex.

See also (Ceyhan (2005, 2010)).

Usage

rel.vert.std.triCM(p)

Arguments

p A 2D point for which CM -vertex region it resides in is to be determined in the
standard equilateral triangle Te.

516 rel.vert.std.triCM

Value

A list with two elements

rv Index of the vertex whose region contains point, p.

tri The vertices of the triangle, Te, where row number corresponds to the vertex
index in rv with row 1 = (0, 0), row 2 = (1, 0), and row 3 = (1/2,

√
3/2).

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.vert.basic.triCM, rel.vert.tri, rel.vert.triCC, rel.vert.basic.triCC, rel.vert.triCM,
and rel.vert.basic.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)

n<-20 #try also n<-40

set.seed(1)
Xp<-runif.std.tri(n)$gen.points

rel.vert.std.triCM(Xp[1,])

Rv<-vector()
for (i in 1:n)

Rv<-c(Rv,rel.vert.std.triCM(Xp[i,])$rv)
Rv

CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

rel.vert.tetraCC 517

Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Te,asp=1,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
points(Xp,pch=".",col=1)
L<-matrix(rep(CM,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

txt<-rbind(Te,CM)
xc<-txt[,1]+c(-.02,.03,.02,0)
yc<-txt[,2]+c(.02,.02,.03,.05)
txt.str<-c("A","B","C","CM")
text(xc,yc,txt.str)
text(Xp,labels=factor(Rv))

End(Not run)

rel.vert.tetraCC The index of the CC-vertex region in a tetrahedron that contains a
point

Description

Returns the index of the vertex whose region contains point p in a tetrahedron th = T (A,B,C,D)
and vertex regions are based on the circumcenter CC of th. (see the plots in the example for
illustrations).

The vertices of the tetrahedron th are labeled as 1 = A, 2 = B, 3 = C, and 4 = C also according
to the row number the vertex is recorded in th.

If the point, p, is not inside th, then the function yields NA as output. The corresponding vertex
region is the polygon whose interior points are closest to that vertex. If th is regular tetrahedron,
then CC and CM (center of mass) coincide.

See also (Ceyhan (2005, 2010)).

Usage

rel.vert.tetraCC(p, th)

Arguments

p A 3D point for which CC-vertex region it resides in is to be determined in the
tetrahedron th.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

518 rel.vert.tetraCC

Value

A list with two elements

rv Index of the CC-vertex region that contains point, p in the tetrahedron th

tri The vertices of the tetrahedron, where row number corresponds to the vertex
index in rv.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

See Also

rel.vert.tetraCM and rel.vert.triCC

Examples

Not run:
set.seed(123)
A<-c(0,0,0)+runif(3,-.2,.2);
B<-c(1,0,0)+runif(3,-.2,.2);
C<-c(1/2,sqrt(3)/2,0)+runif(3,-.2,.2);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)+runif(3,-.2,.2);
tetra<-rbind(A,B,C,D)

n<-20 #try also n<-40

Xp<-runif.tetra(n,tetra)$g

rel.vert.tetraCC(Xp[1,],tetra)

Rv<-vector()
for (i in 1:n)
Rv<-c(Rv,rel.vert.tetraCC(Xp[i,],tetra)$rv)
Rv

CC<-circumcenter.tetra(tetra)
CC

Xlim<-range(tetra[,1],Xp[,1],CC[1])
Ylim<-range(tetra[,2],Xp[,2],CC[2])
Zlim<-range(tetra[,3],Xp[,3],CC[3])

rel.vert.tetraCC 519

xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

plot3D::scatter3D(tetra[,1],tetra[,2],tetra[,3],
phi =0,theta=40, bty = "g",
main="Scatterplot of data points \n and CC-vertex regions",
xlim=Xlim+xd*c(-.05,.05), ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.05,.05),

pch = 20, cex = 1, ticktype = "detailed")
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],
add=TRUE,lwd=2)
#add the data points
plot3D::points3D(Xp[,1],Xp[,2],Xp[,3],pch=".",cex=3, add=TRUE)

plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)
plot3D::text3D(CC[1],CC[2],CC[3], labels=c("CC"), add=TRUE)

D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2;
D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CC,6),ncol=3,byrow=TRUE)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],
add=TRUE,lty = 2)

F1<-intersect.line.plane(A,CC,B,C,D)
L<-matrix(rep(F1,4),ncol=3,byrow=TRUE); R<-rbind(D4,D5,D6,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=2,
add=TRUE,lty = 2)

F2<-intersect.line.plane(B,CC,A,C,D)
L<-matrix(rep(F2,4),ncol=3,byrow=TRUE); R<-rbind(D2,D3,D6,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=3,
add=TRUE,lty = 2)

F3<-intersect.line.plane(C,CC,A,B,D)
L<-matrix(rep(F3,4),ncol=3,byrow=TRUE); R<-rbind(D3,D5,D6,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=4,
add=TRUE,lty = 2)

F4<-intersect.line.plane(D,CC,A,B,C)
L<-matrix(rep(F4,4),ncol=3,byrow=TRUE); R<-rbind(D1,D2,D4,CC)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=5,
add=TRUE,lty = 2)

plot3D::text3D(Xp[,1],Xp[,2],Xp[,3], labels=factor(Rv), add=TRUE)

End(Not run)

520 rel.vert.tetraCM

rel.vert.tetraCM The index of the CM -vertex region in a tetrahedron that contains a
point

Description

Returns the index of the vertex whose region contains point p in a tetrahedron th = T (A,B,C,D)
and vertex regions are based on the center of mass CM = (A+B+C+D)/4 of th. (see the plots
in the example for illustrations).

The vertices of the tetrahedron th are labeled as 1 = A, 2 = B, 3 = C, and 4 = C also according
to the row number the vertex is recorded in th.

If the point, p, is not inside th, then the function yields NA as output. The corresponding vertex
region is the simplex with the vertex, CM , and midpoints of the edges adjacent to the vertex.

See also (Ceyhan (2005, 2010)).

Usage

rel.vert.tetraCM(p, th)

Arguments

p A 3D point for which CM -vertex region it resides in is to be determined in the
tetrahedron th.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

Value

A list with two elements

rv Index of the CM -vertex region that contains point, p in the tetrahedron th

th The vertices of the tetrahedron, where row number corresponds to the vertex
index in rv.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

rel.vert.tetraCM 521

See Also

rel.vert.tetraCC and rel.vert.triCM

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0);
D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)

n<-20 #try also n<-40

Xp<-runif.std.tetra(n)$g

rel.vert.tetraCM(Xp[1,],tetra)

Rv<-vector()
for (i in 1:n)

Rv<-c(Rv, rel.vert.tetraCM(Xp[i,],tetra)$rv)
Rv

Xlim<-range(tetra[,1],Xp[,1])
Ylim<-range(tetra[,2],Xp[,2])
Zlim<-range(tetra[,3],Xp[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

CM<-apply(tetra,2,mean)

plot3D::scatter3D(tetra[,1],tetra[,2],tetra[,3], phi =0,theta=40, bty = "g",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05), zlim=Zlim+zd*c(-.05,.05),

pch = 20, cex = 1, ticktype = "detailed")
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lwd=2)
#add the data points
plot3D::points3D(Xp[,1],Xp[,2],Xp[,3],pch=".",cex=3, add=TRUE)

plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)
plot3D::text3D(CM[1],CM[2],CM[3], labels=c("CM"), add=TRUE)

D1<-(A+B)/2; D2<-(A+C)/2; D3<-(A+D)/2; D4<-(B+C)/2; D5<-(B+D)/2; D6<-(C+D)/2;
L<-rbind(D1,D2,D3,D4,D5,D6); R<-matrix(rep(CM,6),ncol=3,byrow=TRUE)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3], add=TRUE,lty = 2)

F1<-intersect.line.plane(A,CM,B,C,D)
L<-matrix(rep(F1,4),ncol=3,byrow=TRUE); R<-rbind(D4,D5,D6,CM)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=2,
add=TRUE,lty = 2)

F2<-intersect.line.plane(B,CM,A,C,D)

522 rel.vert.tri

L<-matrix(rep(F2,4),ncol=3,byrow=TRUE); R<-rbind(D2,D3,D6,CM)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=3,
add=TRUE,lty = 2)

F3<-intersect.line.plane(C,CM,A,B,D)
L<-matrix(rep(F3,4),ncol=3,byrow=TRUE); R<-rbind(D3,D5,D6,CM)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=4,
add=TRUE,lty = 2)

F4<-intersect.line.plane(D,CM,A,B,C)
L<-matrix(rep(F4,4),ncol=3,byrow=TRUE); R<-rbind(D1,D2,D4,CM)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],col=5,
add=TRUE,lty = 2)

plot3D::text3D(Xp[,1],Xp[,2],Xp[,3], labels=factor(Rv), add=TRUE)

End(Not run)

rel.vert.tri The index of the vertex region in a triangle that contains a given point

Description

Returns the index of the related vertex in the triangle, tri, whose region contains point p.

Vertex regions are based on the general center M = (m1,m2) in Cartesian coordinates or M =
(α, β, γ) in barycentric coordinates in the interior of the triangle tri. Vertices of the triangle tri
are labeled according to the row number the vertex is recorded.

If the point, p, is not inside tri, then the function yields NA as output. The corresponding vertex
region is the polygon with the vertex, M, and projections from M to the edges on the lines joining
vertices and M (see the illustration in the examples).

See also (Ceyhan (2005, 2010)).

Usage

rel.vert.tri(p, tri, M)

Arguments

p A 2D point for which M-vertex region it resides in is to be determined in the
triangle tri.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri.

rel.vert.tri 523

Value

A list with two elements

rv Index of the vertex whose region contains point, p; index of the vertex is the
same as the row number in the triangle, tri

tri The vertices of the triangle, tri, where row number corresponds to the vertex
index rv with rv=1 is row 1, rv=2 is row 2, and rv = 3 is is row 3.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.vert.triCM, rel.vert.triCC, rel.vert.basic.triCC, rel.vert.basic.triCM, rel.vert.basic.tri,
and rel.vert.std.triCM

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
M<-c(1.6,1.0)

P<-c(1.5,1.6)
rel.vert.tri(P,Tr,M)
#try also rel.vert.tri(P,Tr,M=c(2,2))
#center is not in the interior of the triangle

n<-20 #try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also M<-c(1.6,1.0)

Rv<-vector()
for (i in 1:n)

524 rel.vert.triCC

{Rv<-c(Rv,rel.vert.tri(Xp[i,],Tr,M)$rv)}
Rv

Ds<-prj.cent2edges(Tr,M)

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates

plot(Tr,pch=".",xlab="",ylab="",
main="Illustration of M-Vertex Regions\n in a Triangle",axes=TRUE,
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

xc<-Tr[,1]
yc<-Tr[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

txt<-rbind(M,Ds)
xc<-txt[,1]+c(-.02,.04,-.04,0)
yc<-txt[,2]+c(-.02,.04,.05,-.08)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(Rv))

End(Not run)

rel.vert.triCC The index of the CC-vertex region in a triangle that contains a point

Description

Returns the index of the vertex whose region contains point p in a triangle tri= (A,B,C) and
vertex regions are based on the circumcenter CC of tri. (see the plots in the example for illustra-
tions).

The vertices of the triangle tri are labeled as 1 = A, 2 = B, and 3 = C also according to the row
number the vertex is recorded in tri. If the point, p, is not inside tri, then the function yields NA
as output. The corresponding vertex region is the polygon whose interior points are closest to that
vertex. If tri is equilateral triangle, then CC and CM (center of mass) coincide.

See also (Ceyhan (2005, 2010)).

rel.vert.triCC 525

Usage

rel.vert.triCC(p, tri)

Arguments

p A 2D point for which CC-vertex region it resides in is to be determined in the
triangle tri.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

A list with two elements

rv Index of the CC-vertex region that contains point, p in the triangle tri

tri The vertices of the triangle, where row number corresponds to the vertex index
in rv.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.vert.tri, rel.vert.triCM, rel.vert.basic.triCM, rel.vert.basic.triCC, rel.vert.basic.tri,
and rel.vert.std.triCM

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

P<-c(1.3,1.2)
rel.vert.triCC(P,Tr)

CC<-circumcenter.tri(Tr) #the circumcenter
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;

526 rel.vert.triCC

Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1],CC[1])
Ylim<-range(Tr[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,asp=1,xlab="",ylab="",pch=".",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.07,.08,.06,.12,-.1,-.1,-.09)
yc<-txt[,2]+c(.02,-.02,.03,.0,.02,.06,-.04)
txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

RV1<-(A+.5*(D3-A)+A+.5*(D2-A))/2
RV2<-(B+.5*(D3-B)+B+.5*(D1-B))/2
RV3<-(C+.5*(D2-C)+C+.5*(D1-C))/2

txt<-rbind(RV1,RV2,RV3)
xc<-txt[,1]
yc<-txt[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

n<-20 #try also n<-40
Xp<-runif.tri(n,Tr)$g

Rv<-vector()
for (i in 1:n)

Rv<-c(Rv,rel.vert.triCC(Xp[i,],Tr)$rv)
Rv

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,asp=1,xlab="",ylab="",
main="Illustration of CC-Vertex Regions\n in a Triangle",
pch=".",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".")
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(Rv))

txt<-rbind(Tr,CC,Ds)
xc<-txt[,1]+c(-.07,.08,.06,.12,-.1,-.1,-.09)
yc<-txt[,2]+c(.02,-.02,.03,.0,.02,.06,-.04)

rel.vert.triCM 527

txt.str<-c("A","B","C","CC","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

rel.vert.triCM The index of the CM -vertex region in a triangle that contains a given
point

Description

Returns the index of the vertex whose region contains point p in the triangle tri= (y1, y2, y3) with
vertex regions are constructed with center of mass CM = (y1 + y2 + y3)/3 (see the plots in the
example for illustrations).

The vertices of triangle, tri, are labeled as 1, 2, 3 according to the row number the vertex is recorded
in tri. If the point, p, is not inside tri, then the function yields NA as output. The corresponding
vertex region is the polygon with the vertex, CM , and midpoints of the edges adjacent to the vertex.

See (Ceyhan (2005, 2010))

Usage

rel.vert.triCM(p, tri)

Arguments

p A 2D point for which CM -vertex region it resides in is to be determined in the
triangle tri.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

A list with two elements

rv Index of the CM -vertex region that contains point, p in the triangle tri.

tri The vertices of the triangle, where row number corresponds to the vertex index
in rv.

Author(s)

Elvan Ceyhan

528 rel.vert.triCM

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.vert.tri, rel.vert.triCC, rel.vert.basic.triCM, rel.vert.basic.triCC, rel.vert.basic.tri,
and rel.vert.std.triCM

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.6,2);
Tr<-rbind(A,B,C);
P<-c(1.4,1.2)
rel.vert.triCM(P,Tr)

n<-20 #try also n<-40
Xp<-runif.tri(n,Tr)$g

Rv<-vector()
for (i in 1:n)

Rv<-c(Rv,rel.vert.triCM(Xp[i,],Tr)$rv)
Rv

CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,xlab="",ylab="",axes=TRUE,pch=".",xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".")
L<-Ds; R<-matrix(rep(CM,3),ncol=2,byrow=TRUE)
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)
text(Xp,labels=factor(Rv))

txt<-rbind(Tr,CM,D1,D2,D3)
xc<-txt[,1]+c(-.02,.02,.02,-.02,.02,-.01,-.01)

rel.verts.tri 529

yc<-txt[,2]+c(-.02,-.04,.06,-.02,.02,.06,-.06)
txt.str<-c("rv=1","rv=2","rv=3","CM","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

rel.verts.tri The indices of the vertex regions in a triangle that contains the points
in a give data set

Description

Returns the indices of the vertices whose regions contain the points in data set Xp in a triangle
tri= T (A,B,C).

Vertex regions are based on center M = (m1,m2) in Cartesian coordinates or M = (α, β, γ)
in barycentric coordinates in the interior of the triangle to the edges on the extension of the lines
joining M to the vertices or based on the circumcenter of tri. Vertices of triangle tri are labeled as
1, 2, 3 according to the row number the vertex is recorded.

If a point in Xp is not inside tri, then the function yields NA as output for that entry. The cor-
responding vertex region is the polygon with the vertex, M, and projection points from M to the
edges crossing the vertex (as the output of prj.cent2edges(Tr,M)) or CC-vertex region (see the
examples for an illustration).

See also (Ceyhan (2005, 2011)).

Usage

rel.verts.tri(Xp, tri, M)

Arguments

Xp A set of 2D points representing the set of data points for which indices of the
vertex regions containing them are to be determined.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri or the circumcenter of
tri.

Value

A list with two elements

rv Indices of the vertices whose regions contains points in Xp.

tri The vertices of the triangle, where row number corresponds to the vertex index
in rv.

530 rel.verts.tri

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.verts.triCM, rel.verts.triCC, and rel.verts.tri.nondegPE

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
M<-c(1.6,1.0)

P<-c(.4,.2)
rel.verts.tri(P,Tr,M)

n<-20 #try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-as.numeric(runif.tri(1,Tr)$g) #try also #M<-c(1.6,1.0)

rel.verts.tri(Xp,Tr,M)
rel.verts.tri(rbind(Xp,c(2,2)),Tr,M)

rv<-rel.verts.tri(Xp,Tr,M)
rv

ifelse(identical(M,circumcenter.tri(Tr)),
Ds<-rbind((B+C)/2,(A+C)/2,(A+B)/2),Ds<-prj.cent2edges(Tr,M))

Xlim<-range(Tr[,1],M[1],Xp[,1])
Ylim<-range(Tr[,2],M[2],Xp[,2])
xd<-Xlim[2]-Xlim[1]

rel.verts.tri.nondegPE 531

yd<-Ylim[2]-Ylim[1]

if (dimension(M)==3) {M<-bary2cart(M,Tr)}
#need to run this when M is given in barycentric coordinates

plot(Tr,pch=".",xlab="",ylab="",
main="Scatterplot of data points \n and M-vertex regions in a triangle",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

xc<-Tr[,1]
yc<-Tr[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

txt<-rbind(M,Ds)
xc<-txt[,1]+c(.02,.04,-.03,0)
yc<-txt[,2]+c(.07,.04,.05,-.07)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(rv$rv))

End(Not run)

rel.verts.tri.nondegPE

The indices of the vertex regions in a triangle that contains the points
in a give data set

Description

Returns the indices of the vertices whose regions contain the points in data set Xp in a triangle tri=
(A,B,C) and vertex regions are based on the center cent which yields nondegenerate asymptotic
distribution of the domination number of PE-PCD for uniform data in tri for expansion parameter
r in (1, 1.5].

Vertices of triangle tri are labeled as 1, 2, 3 according to the row number the vertex is recorded if a
point in Xp is not inside tri, then the function yields NA as output for that entry. The corresponding
vertex region is the polygon with the vertex, cent, and projection points on the edges. The cen-
ter label cent values 1,2,3 correspond to the vertices M1, M2, and M3; with default 1 (see the
examples for an illustration).

See also (Ceyhan (2005, 2011)).

Usage

rel.verts.tri.nondegPE(Xp, tri, r, cent = 1)

532 rel.verts.tri.nondegPE

Arguments

Xp A set of 2D points representing the set of data points for which indices of the
vertex regions containing them are to be determined.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

r A positive real number which serves as the expansion parameter in PE proximity
region; must be in (1, 1.5] for this function.

cent Index of the center (as 1, 2, 3 corresponding to M1, M2, M3) which gives non-
degenerate asymptotic distribution of the domination number of PE-PCD for
uniform data in tri for expansion parameter r in (1, 1.5]; default cent=1.

Value

A list with two elements

rv Indices (i.e., a vector of indices) of the vertices whose region contains points
in Xp in the triangle tri

tri The vertices of the triangle, where row number corresponds to the vertex index
in rv.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.verts.triCM, rel.verts.triCC, and rel.verts.tri

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

rel.verts.triCC 533

r<-1.35
cent<-2

P<-c(1.4,1.0)
rel.verts.tri.nondegPE(P,Tr,r,cent)

n<-20 #try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g

rel.verts.tri.nondegPE(Xp,Tr,r,cent)
rel.verts.tri.nondegPE(rbind(Xp,c(2,2)),Tr,r,cent)

rv<-rel.verts.tri.nondegPE(Xp,Tr,r,cent)

M<-center.nondegPE(Tr,r)[cent,];
Ds<-prj.nondegPEcent2edges(Tr,r,cent)

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

xc<-Tr[,1]+c(-.03,.05,.05)
yc<-Tr[,2]+c(-.06,.02,.05)
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

txt<-rbind(M,Ds)
xc<-txt[,1]+c(.02,.04,-.03,0)
yc<-txt[,2]+c(.07,.03,.05,-.07)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(rv$rv))

End(Not run)

rel.verts.triCC The indices of the CC-vertex regions in a triangle that contains the
points in a give data set.

534 rel.verts.triCC

Description

Returns the indices of the vertices whose regions contain the points in data set Xp in a triangle
tri= (A,B,C) and vertex regions are based on the circumcenter CC of tri. (see the plots in the
example for illustrations).

The vertices of the triangle tri are labeled as 1 = A, 2 = B, and 3 = C also according to the row
number the vertex is recorded in tri. If a point in Xp is not inside tri, then the function yields NA
as output. The corresponding vertex region is the polygon whose interior points are closest to that
vertex. If tri is equilateral triangle, then CC and CM (center of mass) coincide.

See also (Ceyhan (2005, 2010)).

Usage

rel.verts.triCC(Xp, tri)

Arguments

Xp A set of 2D points representing the set of data points for which indices of the
vertex regions containing them are to be determined.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

A list with two elements

rv Indices (i.e., a vector of indices) of the vertices whose region contains points
in Xp in the triangle tri

tri The vertices of the triangle, where row number corresponds to the vertex index
in rv.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number
of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.verts.triCM, rel.verts.tri, and rel.verts.tri.nondegPE

rel.verts.triCM 535

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

P<-c(.4,.2)
rel.verts.triCC(P,Tr)

n<-20 #try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g

rel.verts.triCC(Xp,Tr)
rel.verts.triCC(rbind(Xp,c(2,2)),Tr)

(rv<-rel.verts.triCC(Xp,Tr))

CC<-circumcenter.tri(Tr)
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1],Xp[,1],CC[1])
Ylim<-range(Tr[,2],Xp[,2],CC[2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,pch=".",asp=1,xlab="",ylab="",
main="Scatterplot of data points \n and the CC-vertex regions",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-matrix(rep(CC,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

xc<-Tr[,1]
yc<-Tr[,2]
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

txt<-rbind(CC,Ds)
xc<-txt[,1]+c(.04,.04,-.03,0)
yc<-txt[,2]+c(-.07,.04,.06,-.08)
txt.str<-c("CC","D1","D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(rv$rv))

End(Not run)

536 rel.verts.triCM

rel.verts.triCM The indices of the CM -vertex regions in a triangle that contains the
points in a give data set

Description

Returns the indices of the vertices whose regions contain the points in data set Xp in a triangle
tri= (A,B,C) and vertex regions are based on the center of mass CM of tri. (see the plots in
the example for illustrations).

The vertices of the triangle tri are labeled as 1 = A, 2 = B, and 3 = C also according to the row
number the vertex is recorded in tri. If a point in Xp is not inside tri, then the function yields NA
as output for that entry. The corresponding vertex region is the polygon with the vertex, CM , and
midpoints the edges crossing the vertex.

See also (Ceyhan (2005, 2010)).

Usage

rel.verts.triCM(Xp, tri)

Arguments

Xp A set of 2D points representing the set of data points for which indices of the
vertex regions containing them are to be determined.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

A list with two elements

rv Indices (i.e., a vector of indices) of the vertices whose region contains points
in Xp in the triangle tri

tri The vertices of the triangle, where row number corresponds to the vertex index
in rv.

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2012). “An investigation of new graph invariants related to the domination number

rel.verts.triCM 537

of random proximity catch digraphs.” Methodology and Computing in Applied Probability, 14(2),
299-334.

See Also

rel.verts.tri, rel.verts.triCC, and rel.verts.tri.nondegPE

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);

P<-c(.4,.2)
rel.verts.triCM(P,Tr)

n<-20 #try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g

rv<-rel.verts.triCM(Xp,Tr)
rv

CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

Xlim<-range(Tr[,1],Xp[,1])
Ylim<-range(Tr[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-matrix(rep(CM,3),ncol=2,byrow=TRUE); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

xc<-Tr[,1]+c(-.04,.05,.05)
yc<-Tr[,2]+c(-.05,.05,.03)
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

txt<-rbind(CM,Ds)
xc<-txt[,1]+c(.04,.04,-.03,0)
yc<-txt[,2]+c(-.07,.04,.06,-.08)
txt.str<-c("CM","D1","D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(rv$rv))

End(Not run)

538 rel.verts.triM

rel.verts.triM The alternative function for the indices of the M-vertex regions in a
triangle that contains the points in a give data set

Description

An alternative function to the function rel.verts.tri when the center M is not the circumcenter
falling outside the triangle. This function only works for a center M in the interior of the triangle,
with the projections of M to the edges along the lines joining M to the vertices.

Usage

rel.verts.triM(Xp, tri, M)

Arguments

Xp A set of 2D points representing the set of data points for which indices of the
vertex regions containing them are to be determined.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

M A 2D point in Cartesian coordinates or a 3D point in barycentric coordinates
which serves as a center in the interior of the triangle tri.

Value

A list with two elements

rv Indices of the vertices whose regions contains points in Xp.

tri The vertices of the triangle, where row number corresponds to the vertex index
in rv.

Author(s)

Elvan Ceyhan

References

There are no references for Rd macro \insertAllCites on this help page.

See Also

rel.verts.tri

rseg.circular 539

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
M<-c(1.6,1.0)

P<-c(.4,.2)
rel.verts.triM(P,Tr,M)

n<-20 #try also n<-40
set.seed(1)
Xp<-runif.tri(n,Tr)$g

M<-c(1.6,1.0) #try also M<-c(1.3,1.3)

(rv<-rel.verts.tri(Xp,Tr,M))
rel.verts.triM(rbind(Xp,c(2,2)),Tr,M)

Ds<-prj.cent2edges(Tr,M)

Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp,pch=".",col=1)
L<-rbind(M,M,M); R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty = 2)

xc<-Tr[,1]+c(-.03,.05,.05)
yc<-Tr[,2]+c(-.06,.02,.05)
txt.str<-c("rv=1","rv=2","rv=3")
text(xc,yc,txt.str)

txt<-rbind(M,Ds)
xc<-txt[,1]+c(.02,.04,-.03,0)
yc<-txt[,2]+c(.07,.03,.05,-.07)
txt.str<-c("M","D1","D2","D3")
text(xc,yc,txt.str)
text(Xp,labels=factor(rv$rv))

End(Not run)

rseg.circular Generation of points segregated (in a radial or circular fashion) from
a given set of points

540 rseg.circular

Description

An object of class "Patterns". Generates n 2D points uniformly in (a1−e, a1+e)× (a1−e, a1+
e) \B(yi, e) (a1 and b1 are denoted as a1 and b1 as arguments) where Yp = (y1, y2, . . . , yny

) with
ny being number of Yp points for various values of e under the segregation pattern and B(yi, e) is
the ball centered at yi with radius e.

Positive values of e yield realizations from the segregation pattern and nonpositive values of e
provide a type of complete spatial randomness (CSR), e should not be too large to make the support
of generated points empty, a1 is defaulted to the minimum of the x-coordinates of the Yp points, a2
is defaulted to the maximum of the x-coordinates of the Yp points, b1 is defaulted to the minimum
of the y-coordinates of the Yp points, b2 is defaulted to the maximum of the y-coordinates of the Yp
points.

Usage

rseg.circular(
n,
Yp,
e,
a1 = min(Yp[, 1]),
a2 = max(Yp[, 1]),
b1 = min(Yp[, 2]),
b2 = max(Yp[, 2])

)

Arguments

n A positive integer representing the number of points to be generated.

Yp A set of 2D points representing the reference points. The generated points are
segregated (in a circular or radial fashion) from these points.

e A positive real number representing the radius of the balls centered at Yp points.
These balls are forbidden for the generated points (i.e., generated points would
be in the complement of union of these balls).

a1, a2 Real numbers representing the range of x-coordinates in the region (default is
the range of x-coordinates of the Yp points).

b1, b2 Real numbers representing the range of y-coordinates in the region (default is
the range of y-coordinates of the Yp points).

Value

A list with the elements

type The type of the point pattern

mtitle The "main" title for the plot of the point pattern

parameters Radial (i.e., circular) exclusion parameter of the segregation pattern

ref.points The input set of reference points Yp, i.e., points from which generated points are
segregated.

rseg.circular 541

gen.points The output set of generated points segregated from Yp points

tri.Yp Logical output for triangulation based on Yp points should be implemented or
not. if TRUE triangulation based on Yp points is to be implemented (default is set
to FALSE).

desc.pat Description of the point pattern

num.points The vector of two numbers, which are the number of generated points and the
number of reference (i.e., Yp) points.

xlimit, ylimit The possible ranges of the x- and y-coordinates of the generated points

Author(s)

Elvan Ceyhan

See Also

rassoc.circular, rseg.std.tri, rsegII.std.tri, and rseg.multi.tri

Examples

Not run:
nx<-100; ny<-4; #try also nx<-1000; ny<-10
e<-.15; #try also e<- -.1; #a negative e provides a CSR realization
#with default bounding box (i.e., unit square)
Y<-cbind(runif(ny),runif(ny))

Xdt<-rseg.circular(nx,Y,e)
Xdt
summary(Xdt)
plot(Xdt,asp=1)

#with default bounding box (i.e., unit square)
Y<-cbind(runif(ny),runif(ny))
Xdt<-Xdt$gen.points
Xlim<-range(Xdt[,1],Y[,1]);
Ylim<-range(Xdt[,2],Y[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Y,asp=1,pch=16,col=2,lwd=2, xlab="x",ylab="y",
main="Circular Segregation of X points from Y Points",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))

points(Xdt)

#with a rectangular bounding box
a1<-0; a2<-10;
b1<-0; b2<-5;
e<-1.5;
Y<-cbind(runif(ny,a1,a2),runif(ny,b1,b2))
#try also Y<-cbind(runif(ny,a1,a2/2),runif(ny,b1,b2/2))

Xdt<-rseg.circular(nx,Y,e,a1,a2,b1,b2)$gen.points

542 rseg.multi.tri

Xlim<-range(Xdt[,1],Y[,1]); Ylim<-range(Xdt[,2],Y[,2])

plot(Y,pch=16,asp=1,col=2,lwd=2, xlab="x",ylab="y",
main="Circular Segregation of X points from Y Points",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))

points(Xdt)

End(Not run)

rseg.multi.tri Generation of points segregated (in a Type I fashion) from a given set
of points

Description

An object of class "Patterns". Generates n points uniformly in the support for Type I segregation
in the convex hull of set of points, Yp.

delta is the parameter of segregation (that is, δ100 % of the area around each vertex in each
Delaunay triangle is forbidden for point generation). delta corresponds to eps in the standard
equilateral triangle Te as delta = 4eps2/3 (see rseg.std.tri function).

If Yp consists only of 3 points, then the function behaves like the function rseg.tri.

DTmesh must be the Delaunay triangulation of Yp and DTr must be the corresponding Delaunay
triangles (both DTmesh and DTr are NULL by default). If NULL, DTmesh is computed via tri.mesh
and DTr is computed via triangles function in interp package.

tri.mesh function yields the triangulation nodes with their neighbours, and creates a triangulation
object, and triangles function yields a triangulation data structure from the triangulation object
created by tri.mesh (the first three columns are the vertex indices of the Delaunay triangles.)

See (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)) for more on the segregation
pattern. Also, see (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay
triangulation and the corresponding algorithm.

Usage

rseg.multi.tri(n, Yp, delta, DTmesh = NULL, DTr = NULL)

Arguments

n A positive integer representing the number of points to be generated.

Yp A set of 2D points from which Delaunay triangulation is constructed.

delta A positive real number in (0, 4/9). delta is the parameter of segregation (that
is, δ100 area around each vertex in each Delaunay triangle is forbidden for point
generation).

DTmesh Delaunay triangulation of Yp, default is NULL, which is computed via tri.mesh
function in interp package. tri.mesh function yields the triangulation nodes
with their neighbours, and creates a triangulation object.

rseg.multi.tri 543

DTr Delaunay triangles based on Yp, default is NULL, which is computed via tri.mesh
function in interp package. triangles function yields a triangulation data
structure from the triangulation object created by tri.mesh.

Value

A list with the elements

type The type of the pattern from which points are to be generated

mtitle The "main" title for the plot of the point pattern

parameters Exclusion parameter, delta, of the Type I segregation pattern. delta is in
(0, 4/9) δ100 % area around each vertex in each Delaunay triangle is forbid-
den for point generation.

ref.points The input set of points Yp; reference points, i.e., points from which generated
points are segregated.

gen.points The output set of generated points segregated from Yp points.

tri.Y Logical output, TRUE, if triangulation based on Yp points should be implemented.

desc.pat Description of the point pattern

num.points The vector of two numbers, which are the number of generated points and the
number of reference (i.e., Yp) points.

xlimit, ylimit The ranges of the x- and y-coordinates of the reference points, which are the Yp
points

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random
Digraph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

544 rseg.std.tri

See Also

rseg.circular, rseg.std.tri, rsegII.std.tri, and rassoc.multi.tri

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-4; #try also nx<-1000; ny<-10;

set.seed(1)
Yp<-cbind(runif(ny),runif(ny))
del<-.4

Xdt<-rseg.multi.tri(nx,Yp,del)
Xdt
summary(Xdt)
plot(Xdt)

#or use
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
#Delaunay triangulation based on Y points
TRY<-interp::triangles(DTY)[,1:3];
Xp<-rseg.multi.tri(nx,Yp,del,DTY,TRY)$gen.points
#data under CSR in the convex hull of Ypoints

Xlim<-range(Yp[,1])
Ylim<-range(Yp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

#plot of the data in the convex hull of Y points together with the Delaunay triangulation
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
#Delaunay triangulation based on Y points

par(pty="s")
plot(Xp,main="Points from Type I Segregation \n in Multipe Triangles",
xlab=" ", ylab=" ",xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05),type="n")
interp::plot.triSht(DTY, add=TRUE,
do.points=TRUE,col="blue")
points(Xp,pch=".",cex=3)

End(Not run)

rseg.std.tri Generation of points segregated (in a Type I fashion) from the vertices
of T_e

rseg.std.tri 545

Description

An object of class "Patterns". Generates n points uniformly in the standard equilateral triangle
Te = T ((0, 0), (1, 0), (1/2,

√
3/2)) under the type I segregation alternative for eps in (0,

√
3/3 =

0.5773503].

In the type I segregation, the triangular forbidden regions around the vertices are determined by the
parameter eps which serves as the height of these triangles (see examples for a sample plot.)

See also (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)).

Usage

rseg.std.tri(n, eps)

Arguments

n A positive integer representing the number of points to be generated.

eps A positive real number representing the parameter of type I segregation (which
is the height of the triangular forbidden regions around the vertices).

Value

A list with the elements

type The type of the point pattern

mtitle The "main" title for the plot of the point pattern

parameters The exclusion parameter, eps, of the segregation pattern, which is the height of
the triangular forbidden regions around the vertices

ref.points The input set of points Y; reference points, i.e., points from which generated
points are segregated (i.e., vertices of Te).

gen.points The output set of generated points segregated from Y points (i.e., vertices of Te).

tri.Y Logical output for triangulation based on Y points should be implemented or
not. if TRUE triangulation based on Y points is to be implemented (default is set
to FALSE).

desc.pat Description of the point pattern

num.points The vector of two numbers, which are the number of generated points and the
number of reference (i.e., Y) points, which is 3 here.

xlimit, ylimit The ranges of the x- and y-coordinates of the reference points, which are the
vertices of Te here.

Author(s)

Elvan Ceyhan

546 rseg.std.tri

References

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random Di-
graph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

rseg.circular, rassoc.circular, rsegII.std.tri, and rseg.multi.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-100
eps<-.3 #try also .15, .5, .75

set.seed(1)
Xdt<-rseg.std.tri(n,eps)
Xdt
summary(Xdt)
plot(Xdt,asp=1)

Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

Xp<-Xdt$gen.points

plot(Te,asp=1,pch=".",xlab="",ylab="",
main="Type I segregation in the \n standard equilateral triangle",

xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp)

#The support for the Type I segregation alternative
sr<-eps/(sqrt(3)/2)
C1<-C+sr*(A-C); C2<-C+sr*(B-C)
A1<-A+sr*(B-A); A2<-A+sr*(C-A)
B1<-B+sr*(A-B); B2<-B+sr*(C-B)
supp<-rbind(A1,B1,B2,C2,C1,A2)

plot(Te,asp=1,pch=".",xlab="",ylab="",
main="Support of the Type I Segregation",

rseg.tri 547

xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
if (sr<=.5)
{

polygon(Te)
polygon(supp,col=5)

} else
{

polygon(Te,col=5,lwd=2.5)
polygon(rbind(A,A1,A2),col=0,border=NA)
polygon(rbind(B,B1,B2),col=0,border=NA)
polygon(rbind(C,C1,C2),col=0,border=NA)

}
points(Xp)

End(Not run)

rseg.tri Generation of points segregated (in a Type I fashion) from the vertices
of a triangle

Description

An object of class "Patterns". Generates n points uniformly in the support for Type I segregation
in a given triangle, tri.

delta is the parameter of segregation (that is, δ100 % of the area around each vertex in the triangle
is forbidden for point generation). delta corresponds to eps in the standard equilateral triangle Te

as delta = 4eps2/3 (see rseg.std.tri function).

See (Ceyhan et al. (2006); Ceyhan et al. (2007); Ceyhan (2011)) for more on the segregation
pattern.

Usage

rseg.tri(n, tri, delta)

Arguments

n A positive integer representing the number of points to be generated from the
segregation pattern in the triangle, tri.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

delta A positive real number in (0, 4/9). delta is the parameter of segregation (that
is, δ100 % area around each vertex in each Delaunay triangle is forbidden for
point generation).

548 rseg.tri

Value

A list with the elements

type The type of the pattern from which points are to be generated

mtitle The "main" title for the plot of the point pattern

parameters Exclusion parameter, delta, of the Type I segregation pattern. delta is in
(0, 4/9) δ100 % area around each vertex in the triangle tri is forbidden for
point generation.

ref.points The input set of points, i.e., vertices of tri; reference points, i.e., points from
which generated points are segregated.

gen.points The output set of generated points segregated from the vertices of tri.

tri.Y Logical output, if TRUE the triangle tri is also plotted when the corresponding
plot function from the Patterns object is called.

desc.pat Description of the point pattern

num.points The vector of two numbers, which are the number of generated points and the
number of reference (i.e., vertex of tri, which is 3 here).

xlimit, ylimit The ranges of the x- and y-coordinates of the reference points, which are the
vertices of the triangle tri

Author(s)

Elvan Ceyhan

References

Ceyhan E (2011). “Spatial Clustering Tests Based on Domination Number of a New Random Di-
graph Family.” Communications in Statistics - Theory and Methods, 40(8), 1363-1395.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

rassoc.tri, rseg.std.tri, rsegII.std.tri, and rseg.multi.tri

Examples

Not run:
n<-100
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C)
del<-.4

rsegII.std.tri 549

Xdt<-rseg.tri(n,Tr,del)
Xdt
summary(Xdt)
plot(Xdt)

Xp<-Xdt$g
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tr,pch=".",xlab="",ylab="",
main="Points from Type I Segregation \n in one Triangle",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.03)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

End(Not run)

rsegII.std.tri Generation of points segregated (in a Type II fashion) from the vertices
of T_e

Description

An object of class "Patterns". Generates n points uniformly in the standard equilateral triangle
Te = T ((0, 0), (1, 0), (1/2,

√
3/2)) under the type II segregation alternative for eps in (0,

√
3/6 =

0.2886751].

In the type II segregation, the annular forbidden regions around the edges are determined by the
parameter eps which is the distance from the interior triangle (i.e., support for the segregation) to
Te (see examples for a sample plot.)

Usage

rsegII.std.tri(n, eps)

Arguments

n A positive integer representing the number of points to be generated.

eps A positive real number representing the parameter of type II segregation (which
is the distance from the interior triangle points to the boundary of Te).

550 rsegII.std.tri

Value

A list with the elements

type The type of the point pattern

mtitle The "main" title for the plot of the point pattern

parameters The exclusion parameter, eps, of the segregation pattern, which is the distance
from the interior triangle to Te

ref.points The input set of points Y; reference points, i.e., points from which generated
points are segregated (i.e., vertices of Te).

gen.points The output set of generated points segregated from Y points (i.e., vertices of Te).

tri.Y Logical output for triangulation based on Y points should be implemented or
not. if TRUE triangulation based on Y points is to be implemented (default is set
to FALSE).

desc.pat Description of the point pattern

num.points The vector of two numbers, which are the number of generated points and the
number of reference (i.e., Y) points, which is 3 here.

xlimit, ylimit The ranges of the x- and y-coordinates of the reference points, which are the
vertices of Te here

Author(s)

Elvan Ceyhan

See Also

rseg.circular, rassoc.circular, rseg.std.tri, and rseg.multi.tri

Examples

A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-10 #try also n<-20 or n<-100 or 1000
eps<-.15 #try also .2

set.seed(1)
Xdt<-rsegII.std.tri(n,eps)
Xdt
summary(Xdt)
plot(Xdt,asp=1)

Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

Xp<-Xdt$gen.points

plot(Te,pch=".",xlab="",ylab="",

runif.basic.tri 551

main="Type II segregation in the \n standard equilateral triangle",
xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))

polygon(Te)
points(Xp)

#The support for the Type II segregation alternative
C1<-c(1/2,sqrt(3)/2-2*eps);
A1<-c(eps*sqrt(3),eps); B1<-c(1-eps*sqrt(3),eps);
supp<-rbind(A1,B1,C1)

plot(Te,asp=1,pch=".",xlab="",ylab="",
main="Support of the Type II Segregation",

xlim=Xlim+xd*c(-.01,.01),ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
polygon(supp,col=5)

points(Xp)

runif.basic.tri Generation of Uniform Points in the standard basic triangle

Description

An object of class "Uniform". Generates n points uniformly in the standard basic triangle Tb =
T ((0, 0), (1, 0), (c1, c2)) where c1 is in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Any given triangle can be mapped to the basic triangle by a combination of rigid body motions (i.e.,
translation, rotation and reflection) and scaling, preserving uniformity of the points in the original
triangle (Ceyhan (2005); Ceyhan et al. (2007); Ceyhan et al. (2006)). Hence, standard basic triangle
is useful for simulation studies under the uniformity hypothesis.

Usage

runif.basic.tri(n, c1, c2)

Arguments

n A positive integer representing the number of uniform points to be generated in
the standard basic triangle.

c1, c2 Positive real numbers representing the top vertex in standard basic triangle Tb =
T ((0, 0), (1, 0), (c1, c2)), c1 must be in [0, 1/2], c2 > 0 and (1− c1)

2 + c22 ≤ 1.

Value

A list with the elements

type The type of the pattern from which points are to be generated

mtitle The "main" title for the plot of the point pattern

552 runif.basic.tri

tess.points The vertices of the support of the uniformly generated points, it is the standard
basic triangle Tb for this function

gen.points The output set of generated points uniformly in the standard basic triangle

out.region The outer region which contains the support region, NULL for this function.

desc.pat Description of the point pattern from which points are to be generated

num.points The vector of two numbers, which are the number of generated points and the
number of vertices of the support points (here it is 3).

txt4pnts Description of the two numbers in num.points.

xlimit, ylimit The ranges of the x- and y-coordinates of the support, Tb

Author(s)

Elvan Ceyhan

References

Ceyhan E (2005). An Investigation of Proximity Catch Digraphs in Delaunay Tessellations, also
available as technical monograph titled Proximity Catch Digraphs: Auxiliary Tools, Properties,
and Applications. Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 21218.

Ceyhan E, Priebe CE, Marchette DJ (2007). “A new family of random graphs for testing spatial
segregation.” Canadian Journal of Statistics, 35(1), 27-50.

Ceyhan E, Priebe CE, Wierman JC (2006). “Relative density of the random r-factor proximity
catch digraphs for testing spatial patterns of segregation and association.” Computational Statistics
& Data Analysis, 50(8), 1925-1964.

See Also

runif.std.tri, runif.tri, and runif.multi.tri

Examples

Not run:
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);
Tb<-rbind(A,B,C);
n<-100

set.seed(1)
runif.basic.tri(1,c1,c2)
Xdt<-runif.basic.tri(n,c1,c2)
Xdt
summary(Xdt)
plot(Xdt)

Xp<-runif.basic.tri(n,c1,c2)$g

Xlim<-range(Tb[,1])

runif.multi.tri 553

Ylim<-range(Tb[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Tb,xlab="",ylab="",xlim=Xlim+xd*c(-.01,.01),
ylim=Ylim+yd*c(-.01,.01),type="n")
polygon(Tb)
points(Xp)

End(Not run)

runif.multi.tri Generation of Uniform Points in the Convex Hull of Points

Description

An object of class "Uniform". Generates n points uniformly in the Convex Hull of set of points,
Yp. That is, generates uniformly in each of the triangles in the Delaunay triangulation of Yp, i.e., in
the multiple triangles partitioning the convex hull of Yp.

If Yp consists only of 3 points, then the function behaves like the function runif.tri.

DTmesh is the Delaunay triangulation of Yp, default is DTmesh=NULL. DTmesh yields triangulation
nodes with neighbours (result of tri.mesh function from interp package).

See (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and
the corresponding algorithm.

Usage

runif.multi.tri(n, Yp, DTmesh = NULL)

Arguments

n A positive integer representing the number of uniform points to be generated in
the convex hull of the point set Yp.

Yp A set of 2D points whose convex hull is the support of the uniform points to be
generated.

DTmesh Triangulation nodes with neighbours (result of tri.mesh function from interp
package).

Value

A list with the elements

type The type of the pattern from which points are to be generated

mtitle The "main" title for the plot of the point pattern

tess.points The points which constitute the vertices of the triangulation and whose convex
hull determines the support of the generated points.

554 runif.multi.tri

gen.points The output set of generated points uniformly in the convex hull of Yp

out.region The outer region which contains the support region, NULL for this function.

desc.pat Description of the point pattern from which points are to be generated

num.points The vector of two numbers, which are the number of generated points and the
number of vertices in the triangulation (i.e., size of Yp) points.

txt4pnts Description of the two numbers in num.points

xlimit, ylimit The ranges of the x- and y-coordinates of the points in Yp

Author(s)

Elvan Ceyhan

References

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

runif.tri, runif.std.tri, and runif.basic.tri,

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-100; ny<-4; #try also nx<-1000; ny<-10;
set.seed(1)
Yp<-cbind(runif(ny,0,10),runif(ny,0,10))

Xdt<-runif.multi.tri(nx,Yp)
#data under CSR in the convex hull of Ypoints
Xdt
summary(Xdt)
plot(Xdt)

Xp<-Xdt$g
#or use
DTY<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")
#Delaunay triangulation based on Y points
Xp<-runif.multi.tri(nx,Yp,DTY)$g
#data under CSR in the convex hull of Ypoints

Xlim<-range(Yp[,1])
Ylim<-range(Yp[,2])
xd<-Xlim[2]-Xlim[1]

runif.std.tetra 555

yd<-Ylim[2]-Ylim[1]

#plot of the data in the convex hull of Y points together with the Delaunay triangulation
plot(Xp, xlab=" ", ylab=" ",
main="Uniform Points in Convex Hull of Y Points",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),type="n")
interp::plot.triSht(DTY, add=TRUE,
do.points = TRUE,pch=16,col="blue")
points(Xp,pch=".",cex=3)

Yp<-rbind(c(.3,.2),c(.4,.5),c(.14,.15))
runif.multi.tri(nx,Yp)

End(Not run)

runif.std.tetra Generation of Uniform Points in the Standard Regular Tetrahedron
T_h

Description

An object of class "Uniform". Generates n points uniformly in the standard regular tetrahedron
Th = T ((0, 0, 0), (1, 0, 0), (1/2,

√
3/2, 0), (1/2,

√
3/6,

√
6/3)).

Usage

runif.std.tetra(n)

Arguments

n A positive integer representing the number of uniform points to be generated in
the standard regular tetrahedron Th.

Value

A list with the elements

type The type of the pattern from which points are to be generated

mtitle The "main" title for the plot of the point pattern

tess.points The vertices of the support region of the uniformly generated points, it is the
standard regular tetrahedron Th for this function

gen.points The output set of generated points uniformly in the standard regular tetrahedron
Th.

out.region The outer region which contains the support region, NULL for this function.

desc.pat Description of the point pattern from which points are to be generated

556 runif.std.tetra

num.points The vector of two numbers, which are the number of generated points and the
number of vertices of the support points (here it is 4).

txt4pnts Description of the two numbers in num.points

xlimit, ylimit, zlimit
The ranges of the x-, y-, and z-coordinates of the support, Th

Author(s)

Elvan Ceyhan

See Also

runif.tetra, runif.tri, and runif.multi.tri

Examples

Not run:
A<-c(0,0,0); B<-c(1,0,0); C<-c(1/2,sqrt(3)/2,0); D<-c(1/2,sqrt(3)/6,sqrt(6)/3)
tetra<-rbind(A,B,C,D)
n<-100

set.seed(1)
Xdt<-runif.std.tetra(n)
Xdt
summary(Xdt)
plot(Xdt)

Xp<-runif.std.tetra(n)$g

Xlim<-range(tetra[,1])
Ylim<-range(tetra[,2])
Zlim<-range(tetra[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3],
phi =20,theta=15, bty = "g", pch = 20, cex = 1,
ticktype = "detailed",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.05,.05))
#add the vertices of the tetrahedron
plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],
add=TRUE,lwd=2)

plot3D::text3D(tetra[,1]+c(.05,0,0,0),tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)

End(Not run)

runif.std.tri 557

Not run:
#need to install scatterplot3d package and call "library(scatterplot3d)"
s3d<-scatterplot3d(Xp, highlight.3d=TRUE,xlab="x",
ylab="y",zlab="z",

col.axis="blue", col.grid="lightblue",
main="3D Scatterplot of the data", pch=20)

s3d$points3d(tetra,pch=20,col="blue")

End(Not run)

runif.std.tri Generation of Uniform Points in the Standard Equilateral Triangle

Description

An object of class "Uniform". Generates n points uniformly in the standard equilateral triangle
Te = T (A,B,C) with vertices A = (0, 0), B = (1, 0), and C = (1/2,

√
3/2).

Usage

runif.std.tri(n)

Arguments

n A positive integer representing the number of uniform points to be generated in
the standard equilateral triangle Te.

Value

A list with the elements

type The type of the pattern from which points are to be generated

mtitle The "main" title for the plot of the point pattern

tess.points The vertices of the support region of the uniformly generated points, it is the
standard equilateral triangle Te for this function

gen.points The output set of generated points uniformly in the standard equilateral triangle
Te.

out.region The outer region which contains the support region, NULL for this function.

desc.pat Description of the point pattern from which points are to be generated

num.points The vector of two numbers, which are the number of generated points and the
number of vertices of the support points (here it is 3).

txt4pnts Description of the two numbers in num.points

xlimit, ylimit The ranges of the x- and y-coordinates of the support, Te

558 runif.std.tri.onesixth

Author(s)

Elvan Ceyhan

See Also

runif.basic.tri, runif.tri, and runif.multi.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
n<-100

set.seed(1)
Xdt<-runif.std.tri(n)
Xdt
summary(Xdt)
plot(Xdt,asp=1)

Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

Xp<-runif.std.tri(n)$gen.points
plot(Te,asp=1,pch=".",xlab="",ylab="",xlim=Xlim+xd*c(-.01,.01),
ylim=Ylim+yd*c(-.01,.01))
polygon(Te)
points(Xp)

End(Not run)

runif.std.tri.onesixth

Generation of Uniform Points in the first one-sixth of standard equi-
lateral triangle

Description

An object of class "Uniform". Generates n points uniformly in the first 1/6th of the standard
equilateral triangle Te = (A,B,C) with vertices with A = (0, 0); B = (1, 0), C = (1/2,

√
3/2)

(see the examples below). The first 1/6th of the standard equilateral triangle is the triangle with
vertices A = (0, 0), (1/2, 0), C = (1/2,

√
3/6).

Usage

runif.std.tri.onesixth(n)

runif.std.tri.onesixth 559

Arguments

n a positive integer representing number of uniform points to be generated in the
first one-sixth of Te.

Value

A list with the elements

type The type of the point pattern

mtitle The "main" title for the plot of the point pattern

support The vertices of the support of the uniformly generated points

gen.points The output set of uniformly generated points in the first 1/6th of the standard
equilateral triangle.

out.region The outer region for the one-sixth of Te, which is just Te here.

desc.pat Description of the point pattern

num.points The vector of two numbers, which are the number of generated points and the
number of vertices of the support (i.e., Y) points.

txt4pnts Description of the two numbers in num.points.

xlimit, ylimit The ranges of the x- and y-coordinates of the generated, support and outer region
points

Author(s)

Elvan Ceyhan

See Also

runif.std.tri, runif.basic.tri, runif.tri, and runif.multi.tri

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C);
CM<-(A+B+C)/3;
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)
nx<-100 #try also nx<-1000

#data generation step
set.seed(1)
Xdt<-runif.std.tri.onesixth(nx)
Xdt
summary(Xdt)
plot(Xdt,asp=1)

Xd<-Xdt$gen.points

560 runif.tetra

#plot of the data with the regions in the equilateral triangle
Xlim<-range(Te[,1])
Ylim<-range(Te[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(Te,asp=1,pch=".",xlim=Xlim+xd*c(-.01,.01),
ylim=Ylim+yd*c(-.01,.01),xlab=" ",ylab=" ",

main="first 1/6th of the \n standard equilateral triangle")
polygon(Te)
L<-Te; R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
polygon(rbind(A,D3,CM),col=5)
points(Xd)

#letter annotation of the plot
txt<-rbind(A,B,C,CM,D1,D2,D3)
xc<-txt[,1]+c(-.02,.02,.02,.04,.05,-.03,0)
yc<-txt[,2]+c(.02,.02,.02,.03,0,.03,-.03)
txt.str<-c("A","B","C","CM","D1","D2","D3")
text(xc,yc,txt.str)

End(Not run)

runif.tetra Generation of Uniform Points in a tetrahedron

Description

An object of class "Uniform". Generates n points uniformly in the general tetrahedron th whose
vertices are stacked row-wise.

Usage

runif.tetra(n, th)

Arguments

n A positive integer representing the number of uniform points to be generated in
the tetrahedron.

th A 4× 3 matrix with each row representing a vertex of the tetrahedron.

Value

A list with the elements

type The type of the pattern from which points are to be generated

mtitle The "main" title for the plot of the point pattern

runif.tetra 561

tess.points The vertices of the support of the uniformly generated points, it is the tetrahe-
dron’ th for this function

gen.points The output set of generated points uniformly in the tetrahedron, th.

out.region The outer region which contains the support region, NULL for this function.

desc.pat Description of the point pattern from which points are to be generated

num.points The vector of two numbers, which are the number of generated points and the
number of vertices of the support points (here it is 4).

txt4pnts Description of the two numbers in num.points

xlimit, ylimit, zlimit
The ranges of the x-, y-, and z-coordinates of the support, th

Author(s)

Elvan Ceyhan

See Also

runif.std.tetra and runif.tri

Examples

Not run:
A<-sample(1:12,3); B<-sample(1:12,3);
C<-sample(1:12,3); D<-sample(1:12,3)
tetra<-rbind(A,B,C,D)

n<-100

set.seed(1)
Xdt<-runif.tetra(n,tetra)
Xdt
summary(Xdt)
plot(Xdt)

Xp<-Xdt$g

Xlim<-range(tetra[,1],Xp[,1])
Ylim<-range(tetra[,2],Xp[,2])
Zlim<-range(tetra[,3],Xp[,3])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
zd<-Zlim[2]-Zlim[1]

plot3D::scatter3D(Xp[,1],Xp[,2],Xp[,3],
theta =225, phi = 30, bty = "g",
main="Uniform Points in a Tetrahedron",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),
zlim=Zlim+zd*c(-.05,.05),

pch = 20, cex = 1, ticktype = "detailed")
#add the vertices of the tetrahedron

562 runif.tri

plot3D::points3D(tetra[,1],tetra[,2],tetra[,3], add=TRUE)
L<-rbind(A,A,A,B,B,C); R<-rbind(B,C,D,C,D,D)
plot3D::segments3D(L[,1], L[,2], L[,3], R[,1], R[,2],R[,3],
add=TRUE,lwd=2)

plot3D::text3D(tetra[,1],tetra[,2],tetra[,3],
labels=c("A","B","C","D"), add=TRUE)

#need to install scatterplot3d package and call "library(scatterplot3d)"
s3d<-scatterplot3d(Xp, highlight.3d=TRUE,
xlab="x",ylab="y",zlab="z",

col.axis="blue", col.grid="lightblue",
main="3D Scatterplot of the data", pch=20)

s3d$points3d(tetra,pch=20,col="blue")

End(Not run)

runif.tri Generation of Uniform Points in a Triangle

Description

An object of class "Uniform". Generates n points uniformly in a given triangle, tri

Usage

runif.tri(n, tri)

Arguments

n A positive integer representing the number of uniform points to be generated in
the triangle.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

A list with the elements

type The type of the pattern from which points are to be generated

mtitle The "main" title for the plot of the point pattern

tess.points The vertices of the support of the uniformly generated points, it is the triangle
tri for this function

gen.points The output set of generated points uniformly in the triangle, tri.

out.region The outer region which contains the support region, NULL for this function.

desc.pat Description of the point pattern from which points are to be generated

seg.tri.support 563

num.points The vector of two numbers, which are the number of generated points and the
number of vertices of the support points (here it is 3).

txt4pnts Description of the two numbers in num.points

xlimit, ylimit The ranges of the x- and y-coordinates of the support, tri

Author(s)

Elvan Ceyhan

See Also

runif.std.tri, runif.basic.tri, and runif.multi.tri

Examples

Not run:
n<-100
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C)

Xdt<-runif.tri(n,Tr)
Xdt
summary(Xdt)
plot(Xdt)

Xp<-Xdt$g
Xlim<-range(Tr[,1])
Ylim<-range(Tr[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]
plot(Tr,pch=".",xlab="",ylab="",main="Uniform Points in One Triangle",

xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
points(Xp)
xc<-Tr[,1]+c(-.02,.02,.02)
yc<-Tr[,2]+c(.02,.02,.04)
txt.str<-c("A","B","C")
text(xc,yc,txt.str)

End(Not run)

seg.tri.support The auxiliary triangle to define the support of type I segregation

564 seg.tri.support

Description

Returns the triangle whose intersection with a general triangle gives the support for type I segrega-
tion given the delta (i.e., δ100 % area of a triangle around the vertices is chopped off). See the plot
in the examples.

Caveat: the vertices of this triangle may be outside the triangle, tri, depending on the value of
delta (i.e., for small values of delta).

Usage

seg.tri.support(delta, tri)

Arguments

delta A positive real number between 0 and 1 that determines the percentage of area
of the triangle around the vertices forbidden for point generation.

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

the vertices of the triangle (stacked row-wise) whose intersection with a general triangle gives the
support for type I segregation for the given delta

Author(s)

Elvan Ceyhan

See Also

rseg.std.tri and rseg.multi.tri

Examples

Not run:
#for a general triangle
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
delta<-.3 #try also .5,.75,.85
Tseg<-seg.tri.support(delta,Tr)

Xlim<-range(Tr[,1],Tseg[,1])
Ylim<-range(Tr[,2],Tseg[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

par(pty="s")
plot(Tr,pch=".",xlab="",ylab="",
main="segregation support is the intersection\n of these two triangles",
axes=TRUE,xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05))
polygon(Tr)
polygon(Tseg,lty=2)

six.extremaTe 565

txt<-rbind(Tr,Tseg)
xc<-txt[,1]+c(-.03,.03,.03,.06,.04,-.04)
yc<-txt[,2]+c(.02,.02,.04,-.03,0,0)
txt.str<-c("A","B","C","T1","T2","T3")
text(xc,yc,txt.str)

End(Not run)

six.extremaTe The closest points among a data set in the standard equilateral trian-
gle to the median lines in the six half edge regions

Description

An object of class "Extrema". Returns the six closest points among the data set, Xp, in the standard
equilateral triangle Te = T (A = (0, 0), B = (1, 0), C = (1/2,

√
3/2)) in half edge regions. In

particular, in regions r1 and r6, it finds the closest point in each region to the line segment [A,CM]
in regions r2 and r3, it finds the closest point in each region to the line segment [B,CM] and
in regions r4 and r5, it finds the closest point in each region to the line segment [C,CM] where
CM = (A+B + C)/3 is the center of mass.

See the example for this function or example for index.six.Te function. If there is no data point in
region ri, then it returns "NA NA" for i-th row in the extrema. ch.all.intri is for checking whether
all data points are in Te (default is FALSE).

Usage

six.extremaTe(Xp, ch.all.intri = FALSE)

Arguments

Xp A set of 2D points among which the closest points in the standard equilateral
triangle to the median lines in 6 half edge regions.

ch.all.intri A logical argument for checking whether all data points are in Te (default is
FALSE).

Value

A list with the elements

txt1 Region labels as r1-r6 (correspond to row number in Extremum Points).

txt2 A short description of the distances as "Distances to Line Segments (A,CM),
(B,CM),and (C,CM) in the six regions r1-r6".

type Type of the extrema points

mtitle The "main" title for the plot of the extrema

566 six.extremaTe

ext The extrema points, here, closest points in each of regions r1-r6 to the line
segments joining vertices to the center of mass, CM .

X The input data, Xp, can be a matrix or data frame

num.points The number of data points, i.e., size of Xp

supp Support of the data points, here, it is Te.

cent The center point used for construction of edge regions.

ncent Name of the center, cent, it is center of mass "CM" for this function.

regions The six regions, r1-r6 and edge regions inside the triangle, Te, provided as a
list.

region.names Names of the regions as "r1"-"r6" and names of the edge regions as "er=1",
"er=2", and "er=3".

region.centers Centers of mass of the regions r1-r6 and of edge regions inside Te.

dist2ref Distances from closest points in each of regions r1-r6 to the line segments
joining vertices to the center of mass, CM .

Author(s)

Elvan Ceyhan

See Also

index.six.Te and cl2edges.std.tri

Examples

Not run:
n<-20 #try also n<-100
Xp<-runif.std.tri(n)$gen.points

Ext<-six.extremaTe(Xp)
Ext
summary(Ext)
plot(Ext)

sixt<-Ext

A<-c(0,0); B<-c(1,0); C<-c(0.5,sqrt(3)/2);
Te<-rbind(A,B,C)
CM<-(A+B+C)/3
D1<-(B+C)/2; D2<-(A+C)/2; D3<-(A+B)/2;
Ds<-rbind(D1,D2,D3)

h1<-c(1/2,sqrt(3)/18); h2<-c(2/3, sqrt(3)/9); h3<-c(2/3, 2*sqrt(3)/9);
h4<-c(1/2, 5*sqrt(3)/18); h5<-c(1/3, 2*sqrt(3)/9); h6<-c(1/3, sqrt(3)/9);

r1<-(h1+h6+CM)/3;r2<-(h1+h2+CM)/3;r3<-(h2+h3+CM)/3;
r4<-(h3+h4+CM)/3;r5<-(h4+h5+CM)/3;r6<-(h5+h6+CM)/3;

slope 567

Xlim<-range(Te[,1],Xp[,1])
Ylim<-range(Te[,2],Xp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

plot(A,pch=".",xlab="",ylab="",axes=TRUE,xlim=Xlim+xd*c(-.05,.05),
ylim=Ylim+yd*c(-.05,.05))
polygon(Te)
L<-Te; R<-Ds
segments(L[,1], L[,2], R[,1], R[,2], lty=2)
polygon(rbind(h1,h2,h3,h4,h5,h6))
points(Xp)
points(sixt$ext,pty=2,pch=4,col="red")

txt<-rbind(Te,r1,r2,r3,r4,r5,r6)
xc<-txt[,1]+c(-.02,.02,.02,0,0,0,0,0,0)
yc<-txt[,2]+c(.02,.02,.03,0,0,0,0,0,0)
txt.str<-c("A","B","C","1","2","3","4","5","6")
text(xc,yc,txt.str)

End(Not run)

slope The slope of a line

Description

Returns the slope of the line joining two distinct 2D points a and b.

Usage

slope(a, b)

Arguments

a, b 2D points that determine the straight line (i.e., through which the straight line
passes).

Value

Slope of the line joining 2D points a and b

Author(s)

Elvan Ceyhan

See Also

Line, paraline, and perpline

568 summary.Extrema

Examples

A<-c(-1.22,-2.33); B<-c(2.55,3.75)
slope(A,B)

slope(c(1,2),c(2,3))

summary.Extrema Return a summary of a Extrema object

Description

Returns the below information about the object:

call of the function defining the object, the type of the extrema (i.e. the description of the
extrema), extrema points, distances from extrema to the reference object (e.g. boundary of a
triangle), some of the data points (from which extrema is found).

Usage

S3 method for class 'Extrema'
summary(object, ...)

Arguments

object An object of class Extrema.

... Additional parameters for summary.

Value

The call of the object of class "Extrema", the type of the extrema (i.e. the description of the
extrema), extrema points, distances from extrema to the reference object (e.g. boundary of a
triangle), some of the data points (from which extrema is found).

See Also

print.Extrema, print.summary.Extrema, and plot.Extrema

Examples

Not run:
n<-10
Xp<-runif.std.tri(n)$gen.points
Ext<-cl2edges.std.tri(Xp)
Ext
summary(Ext)

End(Not run)

summary.Lines 569

summary.Lines Return a summary of a Lines object

Description

Returns the below information about the object:

call of the function defining the object, the defining points, selected x and y points on the line,
equation of the line, and coefficients of the line.

Usage

S3 method for class 'Lines'
summary(object, ...)

Arguments

object An object of class Lines.

... Additional parameters for summary.

Value

The call of the object of class "Lines", the defining points, selected x and y points on the line,
equation of the line, and coefficients of the line (in the form: y = slope * x + intercept).

See Also

print.Lines, print.summary.Lines, and plot.Lines

Examples

A<-c(-1.22,-2.33); B<-c(2.55,3.75)
xr<-range(A,B);
xf<-(xr[2]-xr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=3) #try also l=10, 20 or 100

lnAB<-Line(A,B,x)
lnAB
summary(lnAB)

570 summary.Lines3D

summary.Lines3D Return a summary of a Lines3D object

Description

Returns the below information about the object:

call of the function defining the object, the defining vectors (i.e., initial and direction vectors),
selected x, y, and z points on the line, equation of the line (in parametric form), and coefficients
of the line.

Usage

S3 method for class 'Lines3D'
summary(object, ...)

Arguments

object An object of class Lines3D.
... Additional parameters for summary.

Value

call of the function defining the object, the defining vectors (i.e., initial and direction vectors),
selected x, y, and z points on the line, equation of the line (in parametric form), and coefficients
of the line (for the form: x=x0 + A*t, y=y0 + B*t, and z=z0 + C*t).

See Also

print.Lines3D, print.summary.Lines3D, and plot.Lines3D

Examples

Not run:
P<-c(1,10,3); Q<-c(1,1,3);
vecs<-rbind(P,Q)
Line3D(P,Q,.1)
Line3D(P,Q,.1,dir.vec=FALSE)

tr<-range(vecs);
tf<-(tr[2]-tr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
tsq<-seq(-tf*10-tf,tf*10+tf,l=3) #try also l=10, 20 or 100

lnPQ3D<-Line3D(P,Q,tsq)
lnPQ3D
summary(lnPQ3D)

End(Not run)

summary.NumArcs 571

summary.NumArcs Return a summary of a NumArcs object

Description

Returns the below information about the object:

call of the function defining the object, the description of the proximity catch digraph (PCD),
desc. In the one Delaunay cell case, the function provides the total number of arcs in the digraph,
vertices of Delaunay cell, and indices of target points in the Delaunay cell.

In the multiple Delaunay cell case, the function provides total number of arcs in the digraph, number
of arcs for the induced digraphs for points in the Delaunay cells, vertices of Delaunay cells or indices
of points that form the the Delaunay cells, indices of target points in the convex hull of nontarget
points, indices of Delaunay cells in which points reside, and area or length of the the Delaunay
cells.

Usage

S3 method for class 'NumArcs'
summary(object, ...)

Arguments

object An object of class NumArcs.

... Additional parameters for summary.

Value

The call of the object of class "NumArcs", the desc of the proximity catch digraph (PCD), total
number of arcs in the digraph. Moreover, in the one Delaunay cell case, the function also provides
vertices of Delaunay cell, and indices of target points in the Delaunay cell; and in the multiple De-
launay cell case, it also provides number of arcs for the induced digraphs for points in the Delaunay
cells, vertices of Delaunay cells or indices of points that form the the Delaunay cells, indices of tar-
get points in the convex hull of nontarget points, indices of Delaunay cells in which points reside,
and area or length of the the Delaunay cells.

See Also

print.NumArcs, print.summary.NumArcs, and plot.NumArcs

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g)

572 summary.Patterns

Arcs<-arcsAStri(Xp,Tr,M)
Arcs
summary(Arcs)

End(Not run)

summary.Patterns Return a summary of a Patterns object

Description

Returns the below information about the object:

call of the function defining the object, the type of the pattern, parameters of the pattern, study
window, some sample points from the generated pattern, reference points (if any for the bivariate
pattern), and number of points for each class

Usage

S3 method for class 'Patterns'
summary(object, ...)

Arguments

object An object of class Patterns.

... Additional parameters for summary.

Value

The call of the object of class "Patterns", the type of the pattern, parameters of the pattern,
study window, some sample points from the generated pattern, reference points (if any for the
bivariate pattern), and number of points for each class

See Also

print.Patterns, print.summary.Patterns, and plot.Patterns

Examples

Not run:
nx<-10; #try also 10, 100, and 1000
ny<-5; #try also 1
e<-.15;
Y<-cbind(runif(ny),runif(ny))
#with default bounding box (i.e., unit square)

Xdt<-rseg.circular(nx,Y,e)
Xdt

summary.PCDs 573

summary(Xdt)

End(Not run)

summary.PCDs Return a summary of a PCDs object

Description

Returns the below information about the object:

call of the function defining the object, the type of the proximity catch digraph (PCD), (i.e. the
description of the PCD), some of the partition (i.e. intervalization in the 1D case and triangulation
in the 2D case) points (i.e., vertices of the intervals or the triangles), parameter(s) of the PCD, and
various quantities (number of vertices, number of arcs and arc density of the PCDs, number of
vertices for the partition and number of partition cells (i.e., intervals or triangles)).

Usage

S3 method for class 'PCDs'
summary(object, ...)

Arguments

object An object of class PCDs.

... Additional parameters for summary.

Value

The call of the object of class "PCDs", the type of the proximity catch digraph (PCD), (i.e. the
description of the PCD), some of the partition (i.e. intervalization in the 1D case and triangulation
in the 2D case) points (i.e., vertices of the intervals or the triangles), parameter(s) of the PCD, and
various quantities (number of vertices, number of arcs and arc density of the PCDs, number of
vertices for the partition and number of partition cells (i.e., intervals or triangles)).

See Also

print.PCDs, print.summary.PCDs, and plot.PCDs

Examples

Not run:
A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
Tr<-rbind(A,B,C);
n<-10
Xp<-runif.tri(n,Tr)$g
M<-as.numeric(runif.tri(1,Tr)$g)
Arcs<-arcsAStri(Xp,Tr,M)

574 summary.Planes

Arcs
summary(Arcs)

End(Not run)

summary.Planes Return a summary of a Planes object

Description

Returns the below information about the object:

call of the function defining the object, the defining 3D points, selected x, y, and z points on
the plane, equation of the plane, and coefficients of the plane.

Usage

S3 method for class 'Planes'
summary(object, ...)

Arguments

object An object of class Planes.

... Additional parameters for summary.

Value

The call of the object of class "Planes", the defining 3D points, selected x, y, and z points on
the plane, equation of the plane, and coefficients of the plane (in the form: z = A*x + B*y + C).

See Also

print.Planes, print.summary.Planes, and plot.Planes

Examples

Not run:
P<-c(1,10,3); Q<-c(1,1,3); C<-c(3,9,12)
pts<-rbind(P,Q,C)

xr<-range(pts[,1]); yr<-range(pts[,2])
xf<-(xr[2]-xr[1])*.1
#how far to go at the lower and upper ends in the x-coordinate
yf<-(yr[2]-yr[1])*.1
#how far to go at the lower and upper ends in the y-coordinate
x<-seq(xr[1]-xf,xr[2]+xf,l=5) #try also l=10, 20 or 100
y<-seq(yr[1]-yf,yr[2]+yf,l=5) #try also l=10, 20 or 100

plPQC<-Plane(P,Q,C,x,y)

summary.TriLines 575

plPQC
summary(plPQC)

End(Not run)

summary.TriLines Return a summary of a TriLines object

Description

Returns the below information about the object:

call of the function defining the object, the defining points, selected x and y points on the line,
equation of the line, together with the vertices of the triangle, and coefficients of the line.

Usage

S3 method for class 'TriLines'
summary(object, ...)

Arguments

object An object of class TriLines.
... Additional parameters for summary.

Value

The call of the object of class "TriLines", the defining points, selected x and y points on the
line, equation of the line, together with the vertices of the triangle, and coefficients of the line
(in the form: y = slope * x + intercept).

See Also

print.TriLines, print.summary.TriLines, and plot.TriLines

Examples

Not run:
A<-c(0,0); B<-c(1,0); C<-c(1/2,sqrt(3)/2);
Te<-rbind(A,B,C)
xfence<-abs(A[1]-B[1])*.25
#how far to go at the lower and upper ends in the x-coordinate
x<-seq(min(A[1],B[1])-xfence,max(A[1],B[1])+xfence,l=3)

lnACM<-lineA2CMinTe(x)
lnACM
summary(lnACM)

End(Not run)

576 summary.Uniform

summary.Uniform Return a summary of a Uniform object

Description

Returns the below information about the object:

call of the function defining the object, the type of the pattern (i.e. the description of the uniform
distribution), study window, vertices of the support of the Uniform distribution, some sample points
generated from the uniform distribution, and the number of points (i.e., number of generated points
and the number of vertices of the support of the uniform distribution.)

Usage

S3 method for class 'Uniform'
summary(object, ...)

Arguments

object An object of class Uniform.

... Additional parameters for summary.

Value

The call of the object of class "Uniform", the type of the pattern (i.e. the description of the uni-
form distribution), study window, vertices of the support of the Uniform distribution, some sample
points generated from the uniform distribution, and the number of points (i.e., number of generated
points and the number of vertices of the support of the uniform distribution.)

See Also

print.Uniform, print.summary.Uniform, and plot.Uniform

Examples

Not run:
n<-10 #try also 20, 100, and 1000
A<-c(1,1); B<-c(2,0); R<-c(1.5,2);
Tr<-rbind(A,B,R)

Xdt<-runif.tri(n,Tr)
Xdt
summary(Xdt)

End(Not run)

swamptrees 577

swamptrees Tree Species in a Swamp Forest

Description

Locations and species classification of trees in a plot in the Savannah River, SC, USA. Locations
are given in meters, rounded to the nearest 0.1 decimal. The data come from a one-hectare (200-
by-50m) plot in the Savannah River Site. The 734 mapped stems included 156 Carolina ashes
(Fraxinus caroliniana), 215 water tupelos (Nyssa aquatica), 205 swamp tupelos (Nyssa sylvatica),
98 bald cypresses (Taxodium distichum) and 60 stems from 8 additional three species (labeled as
Others (OT)). The plots were set up by Bill Good and their spatial patterns described in (Good
and Whipple (1982)), the plots have been maintained and resampled by Rebecca Sharitz and her
colleagues of the Savannah River Ecology Laboratory. The data and some of its description are
borrowed from the swamp data entry in the dixon package in the CRAN repository.

See also (Good and Whipple (1982); Jones et al. (1994); Dixon (2002)).

Usage

data(swamptrees)

Format

A data frame with 734 rows and 4 variables

Details

Text describing the variable (i.e., column) names in the data set.

• x,y: x and y (i.e., Cartesian) coordinates of the trees

• live: a categorical variable that indicates the tree is alive (labeled as 1) or dead (labeled as 0)

• sp: species label of the trees:

– FX: Carolina ash (Fraxinus caroliniana)

– NS: Swamp tupelo (Nyssa sylvatica)

– NX: Water tupelo (Nyssa aquatica)

– TD: Bald cypress (Taxodium distichum)

– OT: Other species

Source

Prof. Philip Dixon’s website

https://pdixon.stat.iastate.edu/datasets/goodplot1.txt

578 tri2std.basic.tri

References

Dixon PM (2002). “Nearest-neighbor contingency table analysis of spatial segregation for several
species.” Ecoscience, 9(2), 142-151.

Good BJ, Whipple SA (1982). “Tree spatial patterns: South Carolina bottomland and swamp
forests.” Bulletin of the Torrey Botanical Club, 109(4), 529-536.

Jones RH, Sharitz RR, James SM, Dixon PM (1994). “Tree population dynamics in seven South
Carolina mixed-species forests.” Bulletin of the Torrey Botanical Club, 121(4), 360-368.

Examples

data(swamptrees)
plot(swamptrees$x,swamptrees$y, col=as.numeric(swamptrees$sp),pch=19,
xlab='',ylab='',main='Swamp Trees')

tri2std.basic.tri Converting a triangle to the standard basic triangle form form

Description

This function transforms any triangle, tri, to the standard basic triangle form.

The standard basic triangle form is Tb = T ((0, 0), (1, 0), (c1, c2)) where c1 is in [0, 1/2], c2 > 0
and (1− c1)

2 + c22 ≤ 1.

Any given triangle can be mapped to the standard basic triangle form by a combination of rigid
body motions (i.e., translation, rotation and reflection) and scaling, preserving uniformity of the
points in the original triangle. Hence, standard basic triangle form is useful for simulation studies
under the uniformity hypothesis.

Usage

tri2std.basic.tri(tri)

Arguments

tri A 3× 2 matrix with each row representing a vertex of the triangle.

Value

A list with two elements

Cvec The nontrivial vertex C = (c1, c2) in the standard basic triangle form Tb.

orig.order Row order of the input triangle, tri, when converted to the standard basic trian-
gle form Tb

Xin.convex.hullY 579

Author(s)

Elvan Ceyhan

Examples

Not run:
c1<-.4; c2<-.6
A<-c(0,0); B<-c(1,0); C<-c(c1,c2);

tri2std.basic.tri(rbind(A,B,C))
tri2std.basic.tri(rbind(B,C,A))

A<-c(1,1); B<-c(2,0); C<-c(1.5,2);
tri2std.basic.tri(rbind(A,B,C))
tri2std.basic.tri(rbind(A,C,B))
tri2std.basic.tri(rbind(B,A,C))

End(Not run)

Xin.convex.hullY Points from one class inside the convex hull of the points from the other
class

Description

Given two 2D data sets, Xp and Yp, it returns the Xp points inside the convex hull of Yp points.

See (Okabe et al. (2000); Ceyhan (2010); Sinclair (2016)) for more on Delaunay triangulation and
the corresponding algorithm.

Usage

Xin.convex.hullY(Xp, Yp)

Arguments

Xp A set of 2D points which constitute the data set.

Yp A set of 2D points which constitute the vertices of the Delaunay triangles.

Value

Xp points inside the convex hull of Yp points

Author(s)

Elvan Ceyhan

580 Xin.convex.hullY

References

Ceyhan E (2010). “Extension of One-Dimensional Proximity Regions to Higher Dimensions.”
Computational Geometry: Theory and Applications, 43(9), 721-748.

Okabe A, Boots B, Sugihara K, Chiu SN (2000). Spatial Tessellations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley, New York.

Sinclair D (2016). “S-hull: a fast radial sweep-hull routine for Delaunay triangulation.” 1604.01428.

See Also

plotDelaunay.tri

Examples

Not run:
#nx is number of X points (target) and ny is number of Y points (nontarget)
nx<-20; ny<-5; #try also nx<-40; ny<-10 or nx<-1000; ny<-10;

set.seed(1)
Xp<-cbind(runif(nx,0,1),runif(nx,0,1))
Yp<-cbind(runif(ny,0,.25),runif(ny,0,.25))+cbind(c(0,0,0.5,1,1),c(0,1,.5,0,1))
#try also Yp<-cbind(runif(ny,0,1),runif(ny,0,1))

DT<-interp::tri.mesh(Yp[,1],Yp[,2],duplicate="remove")

Xlim<-range(Xp[,1],Yp[,1])
Ylim<-range(Xp[,2],Yp[,2])
xd<-Xlim[2]-Xlim[1]
yd<-Ylim[2]-Ylim[1]

Xch<-Xin.convex.hullY(Xp,Yp)

plot(Xp,main=" ", xlab=" ", ylab=" ",
xlim=Xlim+xd*c(-.05,.05),ylim=Ylim+yd*c(-.05,.05),pch=".",cex=3)
interp::convex.hull(DT,plot.it = TRUE, add = TRUE) # or try polygon(Yp[ch$i,])
points(Xch,pch=4,col="red")

End(Not run)

Index

∗ datasets
swamptrees, 577

.onAttach, 8

.onLoad, 9

angle.str2end, 9, 12
angle3pnts, 10, 11
arcsAS, 13, 16, 19, 32
arcsAStri, 14, 15, 29, 42
arcsCS, 14, 16, 17, 29, 32
arcsCS1D, 20, 20, 21, 23, 25, 27, 34, 35, 37, 39
arcsCSend.int, 21, 22, 25, 27, 35, 39
arcsCSint, 24
arcsCSmid.int, 21, 23, 25, 26, 27, 35, 39
arcsCStri, 14, 16, 19, 28, 42
arcsPE, 14, 16, 19, 30, 42
arcsPE1D, 21, 23, 25, 27, 32, 35, 37, 39
arcsPEend.int, 23, 27, 34, 34, 37, 39
arcsPEint, 34, 36
arcsPEmid.int, 23, 34, 35, 37, 38
arcsPEtri, 14, 16, 29, 32, 40
area.polygon, 43
as.basic.tri, 44
ASarc.dens.tri, 45, 47, 87, 362
asyvarCS1D, 129
asyvarCS1D (funsMuVarCS1D), 123
asyvarCS2D, 131
asyvarCS2D (funsMuVarCS2D), 125
asyvarCSend.int, 133
asyvarCSend.int (funsMuVarCSend.int),

127
asyvarPE1D, 124
asyvarPE1D (funsMuVarPE1D), 128
asyvarPE2D, 126
asyvarPE2D (funsMuVarPE2D), 131
asyvarPEend.int, 128
asyvarPEend.int (funsMuVarPEend.int),

132

bary2cart (funsCartBary), 112

cart2bary (funsCartBary), 112
center.nondegPE, 47
centerMc, 49, 51
centersMc, 50, 50
circumcenter.basic.tri, 51, 55
circumcenter.tetra, 53
circumcenter.tri, 52, 54, 55
cl2CCvert.reg, 56, 60, 78
cl2CCvert.reg.basic.tri, 58, 59, 78
cl2edges.std.tri, 61, 65, 67, 70, 73, 99, 566
cl2edges.vert.reg.basic.tri, 58, 60, 63,

64, 67, 70, 73
cl2edgesCCvert.reg, 66, 70
cl2edgesCMvert.reg, 58, 60, 63, 65, 67, 68,

73
cl2edgesMvert.reg, 58, 60, 63, 65, 67, 70, 71
cl2faces.vert.reg.tetra, 74
cl2Mc.int, 76
CSarc.dens.test, 78, 85, 353
CSarc.dens.test.int, 81, 85, 355
CSarc.dens.test1D, 80, 83
CSarc.dens.tri, 47, 85, 362

dim, 88
dimension, 87, 284
Dist, 88, 90, 92
dist, 88, 89
dist.point2line, 90, 92, 93, 279
dist.point2plane, 90, 91, 93
dist.point2set, 90, 92, 93
dom.num.exact, 94, 185, 233, 235, 237, 364,

374
dom.num.greedy, 94, 95, 185, 364, 374
draw.arc, 9

edge.reg.triCM, 96, 97, 487, 489, 491, 494,
496

fr2edgesCMedge.reg.std.tri, 58, 60, 63,
75, 98, 101, 105, 286

581

582 INDEX

fr2vertsCCvert.reg, 75, 99, 100, 105, 286
fr2vertsCCvert.reg.basic.tri, 75, 99,

101, 102, 105, 286
funsAB2CMTe, 107
funsAB2MTe, 109
funsCartBary, 111
funsCSEdgeRegs, 113
funsCSGamTe, 115
funsCSt1EdgeRegs, 119
funsIndDelTri, 120
funsMuVarCS1D, 123
funsMuVarCS2D, 125
funsMuVarCSend.int, 127
funsMuVarPE1D, 128
funsMuVarPE2D, 130
funsMuVarPEend.int, 132
funsPDomNum2PE1D, 134
funsRankOrderTe, 137
funsTbMid2CC, 139
fvar1 (funsMuVarPE1D), 128
fvar2 (funsMuVarPE1D), 128

IarcASbasic.tri, 142, 148, 293
IarcASset2pnt.tri, 145, 146, 161, 176, 239
IarcAStri, 144, 146, 147, 165, 167, 183, 296
IarcCS.Te.onesixth, 149
IarcCSbasic.tri, 150, 162
IarcCSedge.reg.std.tri, 152
IarcCSend.int, 153, 156, 157, 171, 173
IarcCSint, 155, 172
IarcCSmid.int, 154, 156, 156, 171, 173
IarcCSset2pnt.std.tri, 158, 161, 175
IarcCSset2pnt.tri, 146, 159, 160, 176
IarcCSstd.tri, 149, 151, 159, 161, 161, 164,

165, 167, 180
IarcCSstd.triRAB, 119
IarcCSstd.triRAB (funsCSEdgeRegs), 113
IarcCSstd.triRAC, 119
IarcCSstd.triRAC (funsCSEdgeRegs), 113
IarcCSstd.triRBC, 119
IarcCSstd.triRBC (funsCSEdgeRegs), 113
IarcCSt1.std.tri, 163
IarcCSt1.std.triRAB, 114
IarcCSt1.std.triRAB (funsCSt1EdgeRegs),

119
IarcCSt1.std.triRAC, 114
IarcCSt1.std.triRAC (funsCSt1EdgeRegs),

119
IarcCSt1.std.triRBC, 114

IarcCSt1.std.triRBC (funsCSt1EdgeRegs),
119

IarcCStri, 148, 151, 153, 159, 161, 162, 164,
165–167, 183, 301

IarcCStri.alt, 166
IarcPEbasic.tri, 168, 180, 183, 303
IarcPEend.int, 154, 157, 170, 172, 173
IarcPEint, 156, 171, 178, 182
IarcPEmid.int, 154, 157, 171, 172, 172
IarcPEset2pnt.std.tri, 159, 174, 176
IarcPEset2pnt.tri, 161, 175, 175, 246
IarcPEstd.tetra, 177, 182
IarcPEstd.tri, 153, 162, 169, 175, 176, 179,

183
IarcPEtetra, 178, 180
IarcPEtri, 148, 165, 167, 169, 175, 176, 178,

180, 182, 182, 309
Idom.num.up.bnd, 184, 233, 235, 237
Idom.num1ASbasic.tri, 186, 190, 201
Idom.num1AStri, 187, 189, 201, 210
Idom.num1CS.Te.onesixth, 191
Idom.num1CSint, 193
Idom.num1CSstd.tri, 116, 193, 195, 198
Idom.num1CSt1std.tri, 193, 196, 197
Idom.num1PEbasic.tri, 187, 199, 205, 208,

210
Idom.num1PEint, 194, 202
Idom.num1PEstd.tetra, 204, 208
Idom.num1PEtetra, 205, 206
Idom.num1PEtri, 203, 205, 208, 209
Idom.num2ASbasic.tri, 212, 216, 219
Idom.num2AStri, 213, 214, 219, 227
Idom.num2CS.Te.onesixth, 217
Idom.num2CSstd.tri, 218
Idom.num2CSstd.tri (funsCSGamTe), 115
Idom.num2PEbasic.tri, 218, 222, 224, 227
Idom.num2PEstd.tetra, 220, 224
Idom.num2PEtetra, 116, 222, 223, 227
Idom.num2PEtri, 116, 219, 222, 224, 225
Idom.num3CSstd.tri (funsCSGamTe), 115
Idom.num3PEstd.tetra, 228, 231
Idom.num3PEtetra, 229, 230
Idom.num4CSstd.tri (funsCSGamTe), 115
Idom.num5CSstd.tri (funsCSGamTe), 115
Idom.num6CSstd.tri (funsCSGamTe), 115
Idom.numASup.bnd.tri, 232, 235, 237
Idom.numCSup.bnd.std.tri, 233, 234, 237
Idom.numCSup.bnd.tri, 94, 233, 235, 236

INDEX 583

Idom.setAStri, 238, 242, 246
Idom.setCSstd.tri, 240, 242, 244
Idom.setCStri, 239, 241, 241, 246
Idom.setPEstd.tri, 241, 243, 246
Idom.setPEtri, 239, 242, 244, 244
in.circle, 246
in.tetrahedron, 247, 247
in.tri.all, 249, 252
in.triangle, 247, 248, 250, 251
inci.matAS, 252, 255, 257, 265
inci.matAStri, 253, 254, 263, 273
inci.matCS, 253, 256, 262, 263, 265
inci.matCS1D, 258, 258, 260, 267
inci.matCSint, 259, 268
inci.matCSstd.tri, 257, 261, 270
inci.matCStri, 255, 257, 262, 262, 273
inci.matPE, 253, 257, 258, 260, 264, 267,

268, 270, 271, 273
inci.matPE1D, 260, 266, 268, 271
inci.matPEint, 267
inci.matPEstd.tri, 262, 265, 269
inci.matPEtetra, 270
inci.matPEtri, 255, 258, 260, 263, 265, 267,

268, 270, 271, 272
index.delaunay.tri (funsIndDelTri), 120
index.six.Te, 273, 566
indices.delaunay.tri (funsIndDelTri),

120
intersect.line.circle, 275, 278, 279
intersect.line.plane, 277
intersect2lines, 276, 278, 279
interval.indices.set, 280
is.in.data, 281
is.point, 88, 283
is.std.eq.tri, 284

kfr2vertsCCvert.reg, 75, 99, 101, 105, 285

Line, 287, 342, 384, 567
line, 288, 291, 342
Line3D, 288, 289, 344, 386
lineA2CMinTe, 110, 140
lineA2CMinTe (funsAB2CMTe), 107
lineA2MinTe, 108, 140
lineA2MinTe (funsAB2MTe), 109
lineB2CMinTe, 110, 140
lineB2CMinTe (funsAB2CMTe), 107
lineB2MinTe, 108, 140
lineB2MinTe (funsAB2MTe), 109

lineC2MinTe, 108, 140
lineC2MinTe (funsAB2MTe), 109
lineD1CCinTb (funsTbMid2CC), 139
lineD2CCinTb (funsTbMid2CC), 139

mu1PE1D (funsMuVarPE1D), 128
muCS1D, 129
muCS1D (funsMuVarCS1D), 123
muCS2D, 131
muCS2D (funsMuVarCS2D), 125
muCSend.int, 133
muCSend.int (funsMuVarCSend.int), 127
muPE1D, 124
muPE1D (funsMuVarPE1D), 128
muPE2D, 126
muPE2D (funsMuVarPE2D), 131
muPEend.int, 128
muPEend.int (funsMuVarPEend.int), 132

NASbasic.tri, 292, 296
NAStri, 144, 293, 295, 301, 303, 309
NCSint, 298, 304
NCStri, 296, 299, 300, 303, 309
NPEbasic.tri, 301, 309
NPEint, 299, 303, 305, 307
NPEstd.tetra, 304, 307
NPEtetra, 304, 305, 306
NPEtri, 296, 301, 303–305, 307, 308
num.arcsAS, 310, 313, 315, 328
num.arcsAStri, 47, 311, 312, 326, 338, 340
num.arcsCS, 311, 313, 324, 326, 328
num.arcsCS1D, 316, 330
num.arcsCSend.int, 317, 318, 320, 322, 331,

335
num.arcsCSint, 317, 319, 333
num.arcsCSmid.int, 317, 318, 320, 321, 331,

335
num.arcsCSstd.tri, 315, 323, 326, 336
num.arcsCStri, 87, 313, 315, 324, 324, 338,

340
num.arcsPE, 311, 315, 326, 336, 340
num.arcsPE1D, 317, 328, 331, 335
num.arcsPEend.int, 318, 322, 330, 331, 333,

335
num.arcsPEint, 320, 330, 332
num.arcsPEmid.int, 318, 322, 330, 331, 333,

334
num.arcsPEstd.tri, 324, 328, 335, 340
num.arcsPEtetra, 337, 360

584 INDEX

num.arcsPEtri, 313, 326, 328, 336, 338, 338,
362

num.delaunay.tri, 340

on.convex.hull, 247, 250, 252
order.dist2edges.std.tri

(funsRankOrderTe), 137

paraline, 288, 341, 344, 384, 567
paraline3D, 291, 342, 343, 386
paraplane, 345, 388
pcds, 347
Pdom.num2A (funsPDomNum2PE1D), 134
Pdom.num2AI (funsPDomNum2PE1D), 134
Pdom.num2AII (funsPDomNum2PE1D), 134
Pdom.num2AIII (funsPDomNum2PE1D), 134
Pdom.num2AIV (funsPDomNum2PE1D), 134
Pdom.num2Asym (funsPDomNum2PE1D), 134
Pdom.num2B (funsPDomNum2PE1D), 134
Pdom.num2BIII (funsPDomNum2PE1D), 134
Pdom.num2Bsym (funsPDomNum2PE1D), 134
Pdom.num2C (funsPDomNum2PE1D), 134
Pdom.num2CIV (funsPDomNum2PE1D), 134
Pdom.num2Csym (funsPDomNum2PE1D), 134
Pdom.num2PE1D, 350, 351
Pdom.num2PE1D (funsPDomNum2PE1D), 134
Pdom.num2PE1Dasy, 137, 349
Pdom.num2PEtri, 137, 350, 350
PEarc.dens.test, 80, 351, 358
PEarc.dens.test.int, 82, 354, 358
PEarc.dens.test1D, 353, 356
PEarc.dens.tetra, 359
PEarc.dens.tri, 87, 360, 360
PEdom.num, 362, 379
PEdom.num.binom.test, 364, 369, 372, 376
PEdom.num.binom.test1D, 358, 367
PEdom.num.binom.test1Dint, 370
PEdom.num.nondeg, 94, 372, 379, 381, 383
PEdom.num.norm.test, 366, 374
PEdom.num.tetra, 364, 374, 377
PEdom.num.tri, 94, 364, 374, 378, 378
PEdom.num1D, 94, 369, 372, 379, 380
PEdom.num1Dnondeg, 372, 382
perpline, 288, 342, 383, 386, 567
perpline2plane, 344, 385
persp, 396
persp3D, 392
Plane, 291, 346, 388
plot.Extrema, 389, 449, 456, 568

plot.Lines, 390, 450, 457, 569
plot.Lines3D, 391, 451, 457, 570
plot.NumArcs, 392, 452, 458, 571
plot.Patterns, 393, 453, 458, 572
plot.PCDs, 394, 454, 459, 573
plot.Planes, 395, 455, 459, 574
plot.TriLines, 397, 460, 461, 575
plot.triSht, 426
plot.Uniform, 398, 461, 462, 576
plotASarcs, 399, 402, 410, 430
plotASarcs.tri, 400, 401, 414, 434
plotASregs, 403, 407, 419, 439, 442
plotASregs.tri, 405, 405, 422, 442, 446
plotCSarcs, 400, 402, 408, 414, 430
plotCSarcs.int, 410, 432
plotCSarcs.tri, 400, 402, 410, 412, 434
plotCSarcs1D, 412, 415, 436
plotCSregs, 405, 407, 417, 420, 422, 439, 442
plotCSregs.int, 419, 425, 440, 448
plotCSregs.tri, 405, 407, 419, 421, 442, 446
plotCSregs1D, 420, 423, 448
plotDelaunay.tri, 341, 425, 427, 580
plotIntervals, 427
plotPEarcs, 400, 402, 410, 428, 434
plotPEarcs.int, 412, 430, 436
plotPEarcs.tri, 400, 402, 414, 430, 432
plotPEarcs1D, 416, 432, 435
plotPEregs, 405, 407, 419, 437, 442, 446
plotPEregs.int, 420, 439, 444
plotPEregs.std.tetra, 441, 444
plotPEregs.tetra, 443
plotPEregs.tri, 405, 407, 422, 439, 444, 444
plotPEregs1D, 425, 427, 440, 447, 448
print.Extrema, 390, 449, 456, 568
print.Lines, 391, 450, 457, 569
print.Lines3D, 392, 451, 457, 570
print.NumArcs, 393, 452, 458, 571
print.Patterns, 394, 453, 458, 572
print.PCDs, 395, 454, 459, 573
print.Planes, 396, 455, 459, 574
print.summary.Extrema, 390, 449, 456, 568
print.summary.Lines, 391, 450, 456, 569
print.summary.Lines3D, 392, 451, 457, 570
print.summary.NumArcs, 393, 452, 457, 571
print.summary.Patterns, 394, 453, 458,

572
print.summary.PCDs, 395, 454, 458, 573
print.summary.Planes, 396, 455, 459, 574

INDEX 585

print.summary.TriLines, 397, 460, 461,
575

print.summary.Uniform, 398, 460, 462, 576
print.TriLines, 397, 460, 461, 575
print.Uniform, 398, 461, 462, 576
prj.cent2edges, 463, 465, 467
prj.cent2edges.basic.tri, 463, 464, 467
prj.nondegPEcent2edges, 463, 465, 466

radii, 468, 471
radius, 469, 470
rank.dist2edges.std.tri

(funsRankOrderTe), 137
rassoc.circular, 472, 475, 476, 478, 481,

485, 541, 546, 550
rassoc.matern, 472, 473, 474
rassoc.multi.tri, 473, 476, 477, 483, 544
rassoc.std.tri, 473, 476, 478, 479, 483
rassoc.tri, 477, 482, 548
rassocII.std.tri, 473, 476, 478, 483, 484
rel.edge.basic.tri, 97, 486, 487, 489, 491,

494, 496
rel.edge.basic.triCM, 97, 488, 491, 494,

496
rel.edge.std.triCM, 97, 487, 489, 490, 494,

496
rel.edge.tri, 97, 487, 489, 491, 492, 496
rel.edge.triCM, 96, 97, 487, 489, 491, 494,

495
rel.edges.tri, 497, 501
rel.edges.triCM, 498, 499
rel.vert.basic.tri, 502, 505, 508, 514,

516, 523, 525, 528
rel.vert.basic.triCC, 503, 504, 508, 514,

516, 523, 525, 528
rel.vert.basic.triCM, 503, 505, 507, 516,

523, 525, 528
rel.vert.end.int, 509, 512
rel.vert.mid.int, 509, 510, 511
rel.vert.std.tri, 513
rel.vert.std.triCM, 503, 505, 508, 514,

515, 523, 525, 528
rel.vert.tetraCC, 517, 521
rel.vert.tetraCM, 518, 520
rel.vert.tri, 503, 505, 508, 514, 516, 522,

525, 528
rel.vert.triCC, 503, 505, 508, 514, 516,

518, 523, 524, 528

rel.vert.triCM, 503, 505, 508, 514, 516,
521, 523, 525, 527

rel.verts.tri, 498, 501, 529, 532, 534, 537,
538

rel.verts.tri.nondegPE, 498, 501, 530,
531, 534, 537

rel.verts.triCC, 530, 532, 533, 537
rel.verts.triCM, 530, 532, 534, 535
rel.verts.triM, 538
rMatClust, 474–476
rseg.circular, 473, 476, 481, 485, 539, 544,

546, 550
rseg.multi.tri, 478, 481, 485, 541, 542,

546, 548, 550, 564
rseg.std.tri, 541, 544, 544, 548, 550, 564
rseg.tri, 483, 542, 547
rsegII.std.tri, 481, 485, 541, 544, 546,

548, 549
runif.basic.tri, 551, 554, 558, 559, 563
runif.multi.tri, 552, 553, 556, 558, 559,

563
runif.std.tetra, 555, 561
runif.std.tri, 552, 554, 557, 559, 563
runif.std.tri.onesixth, 274, 558
runif.tetra, 556, 560
runif.tri, 552–554, 556, 558, 559, 561, 562

seg.tri.support, 563
six.extremaTe, 565
slope, 288, 342, 384, 567
summary.Extrema, 390, 449, 456, 568
summary.Lines, 391, 450, 457, 569
summary.Lines3D, 392, 451, 457, 570
summary.NumArcs, 393, 452, 458, 571
summary.Patterns, 394, 453, 458, 572
summary.PCDs, 395, 454, 459, 573
summary.Planes, 396, 455, 459, 574
summary.TriLines, 397, 460, 461, 575
summary.Uniform, 398, 461, 462, 576
swamptrees, 577

tri.mesh, 121, 477, 542, 543, 553
tri2std.basic.tri, 578
triangles, 121, 477, 542, 543

Xin.convex.hullY, 579

	.onAttach
	.onLoad
	angle.str2end
	angle3pnts
	arcsAS
	arcsAStri
	arcsCS
	arcsCS1D
	arcsCSend.int
	arcsCSint
	arcsCSmid.int
	arcsCStri
	arcsPE
	arcsPE1D
	arcsPEend.int
	arcsPEint
	arcsPEmid.int
	arcsPEtri
	area.polygon
	as.basic.tri
	ASarc.dens.tri
	center.nondegPE
	centerMc
	centersMc
	circumcenter.basic.tri
	circumcenter.tetra
	circumcenter.tri
	cl2CCvert.reg
	cl2CCvert.reg.basic.tri
	cl2edges.std.tri
	cl2edges.vert.reg.basic.tri
	cl2edgesCCvert.reg
	cl2edgesCMvert.reg
	cl2edgesMvert.reg
	cl2faces.vert.reg.tetra
	cl2Mc.int
	CSarc.dens.test
	CSarc.dens.test.int
	CSarc.dens.test1D
	CSarc.dens.tri
	dimension
	Dist
	dist.point2line
	dist.point2plane
	dist.point2set
	dom.num.exact
	dom.num.greedy
	edge.reg.triCM
	fr2edgesCMedge.reg.std.tri
	fr2vertsCCvert.reg
	fr2vertsCCvert.reg.basic.tri
	funsAB2CMTe
	funsAB2MTe
	funsCartBary
	funsCSEdgeRegs
	funsCSGamTe
	funsCSt1EdgeRegs
	funsIndDelTri
	funsMuVarCS1D
	funsMuVarCS2D
	funsMuVarCSend.int
	funsMuVarPE1D
	funsMuVarPE2D
	funsMuVarPEend.int
	funsPDomNum2PE1D
	funsRankOrderTe
	funsTbMid2CC
	IarcASbasic.tri
	IarcASset2pnt.tri
	IarcAStri
	IarcCS.Te.onesixth
	IarcCSbasic.tri
	IarcCSedge.reg.std.tri
	IarcCSend.int
	IarcCSint
	IarcCSmid.int
	IarcCSset2pnt.std.tri
	IarcCSset2pnt.tri
	IarcCSstd.tri
	IarcCSt1.std.tri
	IarcCStri
	IarcCStri.alt
	IarcPEbasic.tri
	IarcPEend.int
	IarcPEint
	IarcPEmid.int
	IarcPEset2pnt.std.tri
	IarcPEset2pnt.tri
	IarcPEstd.tetra
	IarcPEstd.tri
	IarcPEtetra
	IarcPEtri
	Idom.num.up.bnd
	Idom.num1ASbasic.tri
	Idom.num1AStri
	Idom.num1CS.Te.onesixth
	Idom.num1CSint
	Idom.num1CSstd.tri
	Idom.num1CSt1std.tri
	Idom.num1PEbasic.tri
	Idom.num1PEint
	Idom.num1PEstd.tetra
	Idom.num1PEtetra
	Idom.num1PEtri
	Idom.num2ASbasic.tri
	Idom.num2AStri
	Idom.num2CS.Te.onesixth
	Idom.num2PEbasic.tri
	Idom.num2PEstd.tetra
	Idom.num2PEtetra
	Idom.num2PEtri
	Idom.num3PEstd.tetra
	Idom.num3PEtetra
	Idom.numASup.bnd.tri
	Idom.numCSup.bnd.std.tri
	Idom.numCSup.bnd.tri
	Idom.setAStri
	Idom.setCSstd.tri
	Idom.setCStri
	Idom.setPEstd.tri
	Idom.setPEtri
	in.circle
	in.tetrahedron
	in.tri.all
	in.triangle
	inci.matAS
	inci.matAStri
	inci.matCS
	inci.matCS1D
	inci.matCSint
	inci.matCSstd.tri
	inci.matCStri
	inci.matPE
	inci.matPE1D
	inci.matPEint
	inci.matPEstd.tri
	inci.matPEtetra
	inci.matPEtri
	index.six.Te
	intersect.line.circle
	intersect.line.plane
	intersect2lines
	interval.indices.set
	is.in.data
	is.point
	is.std.eq.tri
	kfr2vertsCCvert.reg
	Line
	Line3D
	NASbasic.tri
	NAStri
	NCSint
	NCStri
	NPEbasic.tri
	NPEint
	NPEstd.tetra
	NPEtetra
	NPEtri
	num.arcsAS
	num.arcsAStri
	num.arcsCS
	num.arcsCS1D
	num.arcsCSend.int
	num.arcsCSint
	num.arcsCSmid.int
	num.arcsCSstd.tri
	num.arcsCStri
	num.arcsPE
	num.arcsPE1D
	num.arcsPEend.int
	num.arcsPEint
	num.arcsPEmid.int
	num.arcsPEstd.tri
	num.arcsPEtetra
	num.arcsPEtri
	num.delaunay.tri
	paraline
	paraline3D
	paraplane
	pcds
	Pdom.num2PE1Dasy
	Pdom.num2PEtri
	PEarc.dens.test
	PEarc.dens.test.int
	PEarc.dens.test1D
	PEarc.dens.tetra
	PEarc.dens.tri
	PEdom.num
	PEdom.num.binom.test
	PEdom.num.binom.test1D
	PEdom.num.binom.test1Dint
	PEdom.num.nondeg
	PEdom.num.norm.test
	PEdom.num.tetra
	PEdom.num.tri
	PEdom.num1D
	PEdom.num1Dnondeg
	perpline
	perpline2plane
	Plane
	plot.Extrema
	plot.Lines
	plot.Lines3D
	plot.NumArcs
	plot.Patterns
	plot.PCDs
	plot.Planes
	plot.TriLines
	plot.Uniform
	plotASarcs
	plotASarcs.tri
	plotASregs
	plotASregs.tri
	plotCSarcs
	plotCSarcs.int
	plotCSarcs.tri
	plotCSarcs1D
	plotCSregs
	plotCSregs.int
	plotCSregs.tri
	plotCSregs1D
	plotDelaunay.tri
	plotIntervals
	plotPEarcs
	plotPEarcs.int
	plotPEarcs.tri
	plotPEarcs1D
	plotPEregs
	plotPEregs.int
	plotPEregs.std.tetra
	plotPEregs.tetra
	plotPEregs.tri
	plotPEregs1D
	print.Extrema
	print.Lines
	print.Lines3D
	print.NumArcs
	print.Patterns
	print.PCDs
	print.Planes
	print.summary.Extrema
	print.summary.Lines
	print.summary.Lines3D
	print.summary.NumArcs
	print.summary.Patterns
	print.summary.PCDs
	print.summary.Planes
	print.summary.TriLines
	print.summary.Uniform
	print.TriLines
	print.Uniform
	prj.cent2edges
	prj.cent2edges.basic.tri
	prj.nondegPEcent2edges
	radii
	radius
	rassoc.circular
	rassoc.matern
	rassoc.multi.tri
	rassoc.std.tri
	rassoc.tri
	rassocII.std.tri
	rel.edge.basic.tri
	rel.edge.basic.triCM
	rel.edge.std.triCM
	rel.edge.tri
	rel.edge.triCM
	rel.edges.tri
	rel.edges.triCM
	rel.vert.basic.tri
	rel.vert.basic.triCC
	rel.vert.basic.triCM
	rel.vert.end.int
	rel.vert.mid.int
	rel.vert.std.tri
	rel.vert.std.triCM
	rel.vert.tetraCC
	rel.vert.tetraCM
	rel.vert.tri
	rel.vert.triCC
	rel.vert.triCM
	rel.verts.tri
	rel.verts.tri.nondegPE
	rel.verts.triCC
	rel.verts.triCM
	rel.verts.triM
	rseg.circular
	rseg.multi.tri
	rseg.std.tri
	rseg.tri
	rsegII.std.tri
	runif.basic.tri
	runif.multi.tri
	runif.std.tetra
	runif.std.tri
	runif.std.tri.onesixth
	runif.tetra
	runif.tri
	seg.tri.support
	six.extremaTe
	slope
	summary.Extrema
	summary.Lines
	summary.Lines3D
	summary.NumArcs
	summary.Patterns
	summary.PCDs
	summary.Planes
	summary.TriLines
	summary.Uniform
	swamptrees
	tri2std.basic.tri
	Xin.convex.hullY
	Index

